Question #275498

Find the first partial derivative of



f(w, x, y, z) = w ^ 2 * x * y ^ 2 + x * y ^ 3 * z ^ 2

1
Expert's answer
2021-12-06T12:16:02-0500

fx(x,y,z,w)=(xy2w2+xy3z2)x=\frac{\partial f}{\partial x}(x,y,z,w)=\frac{\partial (x\cdot y^2\cdot w^2+x\cdot y^3\cdot z^2)}{\partial x}=\\

(xy2w2)x+(xy3z2)x=y2w2xx+y3z2xx=y2w21+y3z21==y2w2+y3z2\frac{\partial (x\cdot y^2\cdot w^2)}{\partial x}+ \frac{\partial (x\cdot y^3\cdot z^2)}{\partial x}=y^2\cdot w^2\cdot \frac{\partial x}{\partial x}+y^3\cdot z^2\cdot \frac{\partial x}{\partial x}=y^2\cdot w^2\cdot 1+y^3\cdot z^2\cdot 1=\\ =y^2\cdot w^2+y^3\cdot z^2

fy(x,y,z,w)=(xy2w2+xy3z2)y=\frac{\partial f}{\partial y}(x,y,z,w)=\frac{\partial (x\cdot y^2\cdot w^2+x\cdot y^3\cdot z^2)}{\partial y}=\\

=(xy2w2)y+(xy3z2)y=xw2y2x+xz2y3y=xw2(2y)+xz2(3y2)==2xyw2+3xy2z2=\frac{\partial (x\cdot y^2\cdot w^2)}{\partial y}+ \frac{\partial (x\cdot y^3\cdot z^2)}{\partial y}=x\cdot w^2\cdot \frac{\partial y^2}{\partial x}+x\cdot z^2\cdot \frac{\partial y^3}{\partial y}=x\cdot w^2\cdot (2y)+x\cdot z^2\cdot (3y^2)=\\ =2\cdot x\cdot y \cdot w^2+3\cdot x\cdot y^2\cdot z^2

fz(x,y,z,w)=(xy2w2+xy3z2)z=\frac{\partial f}{\partial z}(x,y,z,w)=\frac{\partial (x\cdot y^2\cdot w^2+x\cdot y^3\cdot z^2)}{\partial z}=\\

(xy2w2)z+(xy3z2)z=0+xy3z2z=xy3(2z)=2xy3z\frac{\partial (x\cdot y^2\cdot w^2)}{\partial z}+ \frac{\partial (x\cdot y^3\cdot z^2)}{\partial z}=0+x\cdot y^3\cdot \frac{\partial z^2}{\partial z}=x\cdot y^3\cdot(2z)=2\cdot x\cdot y^3\cdot z

fw(x,y,z,w)=(xy2w2+xy3z2)w=\frac{\partial f}{\partial w}(x,y,z,w)=\frac{\partial (x\cdot y^2\cdot w^2+x\cdot y^3\cdot z^2)}{\partial w}=\\

(xy2w2)w+(xy3z2)w=xy2w2w+0=xy2(2w)=2xy2w\frac{\partial (x\cdot y^2\cdot w^2)}{\partial w}+ \frac{\partial (x\cdot y^3\cdot z^2)}{\partial w}=x\cdot y^2\cdot \frac{\partial w^2}{\partial w}+0=x\cdot y^2\cdot (2w)=2\cdot x\cdot y^2\cdot w


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS