Solve the Cauchy Problem,
xux+(x+y)uy=u+1 with u(x,y)=x2 on y=0
Taking
"x u_{x}+y u_{y}=0 \\text { with } u(x, y)=x \\text { on } x^{2}+y^{2}=1"
Due to the contour conditions we will consider the change of variables
"\\begin{aligned}\n\n&x=r \\cos \\theta \\\\\n\n&y=r \\sin \\theta\n\n\\end{aligned}"
with
"\\begin{aligned}\n\n&d x=d r \\cos \\theta-r \\sin \\theta d \\theta \\\\\n\n&d y=d r \\sin \\theta+r \\cos \\theta d \\theta\n\n\\end{aligned}"
we have
"\\begin{aligned}\n\n&u_{x}=u_{r} \\frac{d r}{d x}+u_{\\theta} \\frac{d \\theta}{d x} \\\\\n\n&u_{y}=u_{r} \\frac{d r}{d y}+u_{\\theta} \\frac{d \\theta}{d y}\n\n\\end{aligned}"
Here from the characteristic curves
Â
"\\frac{d x}{x}=\\frac{d y}{y} \\Rightarrow \\frac{d y}{d x}=\\frac{y}{x}=\\tan \\theta"
So, we obtain
"x u_{x}+y u_{y}=0 \\Longleftrightarrow 2 r u_{r}=0 \\Rightarrow u(r, \\theta)=C+\\Phi(\\theta)"
Note that
"\\begin{aligned}\n\n\\frac{d r}{d x} &=\\frac{1}{\\cos \\theta} \\\\\n\n\\frac{d r}{d y} &=\\frac{1}{\\sin \\theta} \\\\\n\n\\frac{d \\theta}{d x} &=0 \\\\\n\n\\frac{d \\theta}{d y} &=0\n\n\\end{aligned}"
Now with the boundary conditions
"u(1, \\theta)=\\cos \\theta \\Rightarrow \\Phi(\\theta)=\\cos \\theta \\text { and } C=0"
and finally
"u(r, \\theta)=\\cos \\theta"
or in (x, y) coordinates, "u(x, y)=\\frac{x}{\\sqrt{x^{2}+y^{2}}}"
Comments
Leave a comment