x2uxy+9y2u=0 ...(i)Let u=f(x)g(y)ux=f′(x)g(y)uy=f(x)g′(y)
Substituting in (i):
x2f′g′+9y2fg=0x2f′g′=−9y2fgfx2f′=g′−9y2g=λ (λ>0)
Consider fx2f′=λ & g′−9y2g=λ
⇒fdf=x2λdx & gg′=λ−9y2⇒logf=x−λ+C1 & gdg=λ−9y2dy⇒f=ex−λ+C1 & logg=λ−9.3y3+C2⇒f=Aex−λ & logg=λ−3y3+C2
⇒g=eλ−3y3+C2⇒g=Beλ−3y3∴u(x,y)=Aex−λ.Beλ−3y3⇒u(x,y)=Cex−λ−λ3y3 [C=A.B]
Comments
Leave a comment