Answer to Question #275541 in Calculus for dandelion

Question #275541

Apply separation of variable to solve

x2uxy+9y2u=0


1
Expert's answer
2022-02-02T13:45:06-0500

x2uxy+9y2u=0 ...(i)Let u=f(x)g(y)ux=f(x)g(y)uy=f(x)g(y)x^2u_{xy}+9y^2u=0\ ...(i) \\ Let\ u=f(x)g(y) \\u_x=f'(x)g(y) \\u_y=f(x)g'(y)

Substituting in (i):

x2fg+9y2fg=0x2fg=9y2fgx2ff=9y2gg=λ (λ>0)x^2f'g'+9y^2fg=0 \\ x^2f'g'=-9y^2fg \\ \dfrac{x^2f'}{f}=\dfrac{-9y^2g}{g'}=\lambda\ (\lambda>0)

Consider x2ff=λ & 9y2gg=λ\dfrac{x^2f'}{f}=\lambda\ \& \ \dfrac{-9y^2g}{g'}=\lambda

dff=λdxx2 & gg=9y2λlogf=λx+C1 & dgg=9y2dyλf=eλx+C1 & logg=9λ.y33+C2f=Aeλx & logg=3y3λ+C2\Rightarrow\dfrac{df}{f}=\dfrac{\lambda dx}{x^2}\ \&\ \dfrac{g'}{g}=\dfrac{-9y^2}{\lambda} \\ \Rightarrow\log f=\dfrac{-\lambda}{x}+C_1\ \&\ \dfrac{dg}{g}=\dfrac{-9y^2dy}{\lambda} \\\Rightarrow f=e^{\frac{-\lambda}{x}+C_1}\ \&\ \log g=\dfrac{-9}{\lambda}.\dfrac{y^3}{3}+C_2 \\\Rightarrow f=Ae^{\frac{-\lambda}{x}}\ \&\ \log g=\dfrac{-3y^3}{\lambda}+C_2

g=e3y3λ+C2g=Be3y3λu(x,y)=Aeλx.Be3y3λu(x,y)=Ceλx3y3λ  [C=A.B]\Rightarrow g=e^{\frac{-3y^3}{\lambda}+C_2} \\ \Rightarrow g=Be^{\frac{-3y^3}{\lambda}} \\\therefore u(x,y)=Ae^{\frac{-\lambda}{x}}.Be^{\frac{-3y^3}{\lambda}} \\\Rightarrow u(x,y)=Ce^{\frac{-\lambda}{x}-\frac{3y^3}{\lambda}} \ \ [C=A.B]

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment