Apply separation of variable to solve
x2uxy+9y2u=0
"x^2u_{xy}+9y^2u=0\\ ...(i)\n\\\\ Let\\ u=f(x)g(y)\n\\\\u_x=f'(x)g(y)\n\\\\u_y=f(x)g'(y)"
Substituting in (i):
"x^2f'g'+9y^2fg=0\n\\\\ x^2f'g'=-9y^2fg\n\\\\ \\dfrac{x^2f'}{f}=\\dfrac{-9y^2g}{g'}=\\lambda\\ (\\lambda>0)"
Consider "\\dfrac{x^2f'}{f}=\\lambda\\ \\& \\ \\dfrac{-9y^2g}{g'}=\\lambda"
"\\Rightarrow\\dfrac{df}{f}=\\dfrac{\\lambda dx}{x^2}\\ \\&\\ \\dfrac{g'}{g}=\\dfrac{-9y^2}{\\lambda}\n\\\\ \\Rightarrow\\log f=\\dfrac{-\\lambda}{x}+C_1\\ \\&\\ \\dfrac{dg}{g}=\\dfrac{-9y^2dy}{\\lambda}\n\\\\\\Rightarrow f=e^{\\frac{-\\lambda}{x}+C_1}\\ \\&\\ \\log g=\\dfrac{-9}{\\lambda}.\\dfrac{y^3}{3}+C_2\n\\\\\\Rightarrow f=Ae^{\\frac{-\\lambda}{x}}\\ \\&\\ \\log g=\\dfrac{-3y^3}{\\lambda}+C_2"
"\\Rightarrow g=e^{\\frac{-3y^3}{\\lambda}+C_2}\n\\\\ \\Rightarrow g=Be^{\\frac{-3y^3}{\\lambda}}\n\\\\\\therefore u(x,y)=Ae^{\\frac{-\\lambda}{x}}.Be^{\\frac{-3y^3}{\\lambda}}\n\\\\\\Rightarrow u(x,y)=Ce^{\\frac{-\\lambda}{x}-\\frac{3y^3}{\\lambda}} \\ \\ [C=A.B]"
Comments
Leave a comment