The Laplacian of a function f
of n
variables x
1
,x
2
,⋯x
n
, denoted ∇
2
f
is defined by
∇
2
f(x
1
,x
2
,⋯,x
n
):=∂
2
f
∂x
2
1
+∂
2
f
∂x
2
2
+⋯+∂
2
f
∂x
2
n
Now assume that f
depends only on r
where r=(x
2
1
+x
2
2
+⋯+x
2
n
)
1
2
, i.e. f(x
1
,x
2
,⋯,x
n
)=g(r)
, for some function g
. Show that, for x
1
,x
2
,⋯,x
n
≠0
,
∇
2
f=n−1
r
g
′
(r)+g
′′
(r)
r=(x 1 ^ 2 +x 2 ^ 2 +***+x n ^ 2 )^ 1 2 i.e. f(x 1 ,x 2 ,***,x n )=g(r) for some function g. Show that, for x 1 ,x 2 ,***,x n ne0 ,nabla^ 2 f= n-1 r g^ prime (r)+g^ prime prime (r)
Comments
Leave a comment