The Laplacian of a function f
 of n
 variables x
1
,x
2
,⋯x
n
, denoted ∇
2
f
 is defined by
∇
2
f(x
1
,x
2
,⋯,x
n
):=∂
2
f
∂x
2
1
+∂
2
f
∂x
2
2
+⋯+∂
2
f
∂x
2
n
Now assume that f
 depends only on r
 where r=(x
2
1
+x
2
2
+⋯+x
2
n
)
1
2
, i.e. f(x
1
,x
2
,⋯,x
n
)=g(r)
, for some function g
. Show that, for x
1
,x
2
,⋯,x
n
≠0
,
∇
2
f=n−1
r
g
′
(r)+g
′′
(r)
r=(x 1 ^ 2 +x 2 ^ 2 +***+x n ^ 2 )^ 1 2 i.e. f(x 1 ,x 2 ,***,x n )=g(r) for some function g. Show that, for x 1 ,x 2 ,***,x n ne0 ,nabla^ 2 f= n-1 r g^ prime (r)+g^ prime prime (r)
"r=\\sqrt{x_1^2+x_2^2+...+x_n^2}"
"f(x_ 1 ,x_ 2 ,...,x _n )=g(r)"
"\\frac{\\partial r}{\\partial x_n}=\\frac{x_n}{\\sqrt{x_1^2+x_2^2+...+x_n^2}}"
"\\frac{\\partial^2 r}{\\partial x^2_n}=\\frac{\\sqrt{x_1^2+x_2^2+...+x_n^2}-x^2_n\/\\sqrt{x_1^2+x_2^2+...+x_n^2}}{x_1^2+x_2^2+...+x_n^2}"
"\\nabla^2f=n\/r-\\frac{x_1^2+x_2^2+...+x_n^2}{\\sqrt{x_1^2+x_2^2+...+x_n^2}(x_1^2+x_2^2+...+x_n^2)}=\\frac{n-1}{r}"
Comments
Leave a comment