Consider,
∇(A⋅B)=∑idxd(A⋅B)=∑i(dxdA⋅B+A⋅dxdB)
=∑i(dxdA⋅B)+∑(A⋅dxdB) ..............(i)
Now B(i∗dxdA)=(B⋅dxdA)i−(B⋅i)dxdA
=(B⋅dxdA)i=B∗(i∗dxdA)+(B⋅i)dxdA
∴∑(B⋅dxdA)i=B∗(i∗dxdA)+(B⋅i)dxdA
=B∗∑(i∗dxdA)+(B⋅∑idxd)A
=B∗(∇∗A)+(B⋅∇)A
∴∑i(dxdA⋅B)=B∗(∇∗A)+(B⋅∇)A............(ii)
Similarly, if we interchange the role of A and B we can prove;
∑i(A⋅dxdB)=A∗(∇∗B)+(A⋅∇)B............(iii)
Substituting (ii) and (iii) in (i), we get:
∇(A⋅B)=(B⋅∇)A+(A⋅∇)B+B∗(∇∗A)+A∗(∇∗A)
Comments