If A
 and B
 are vector fields, prove the following:
∇(A⋅B)=(B⋅∇)A+(A⋅∇)B+B×(∇×A)+A×(∇×B).
Submit
Some problems have options such as save, reset, hints, or show answer. These options follow the Submit button.
Consider,
"\\nabla(\\vec{A}\\cdot\\vec{B})=\\sum\\vec{i}\\frac{d}{dx}(\\vec{A}\\cdot\\vec{B})=\\sum\\vec{i}(\\frac{d\\vec{A}}{dx}\\cdot\\vec{B}+\\vec{A}\\cdot\\frac{d\\vec{B}}{dx})"
"=\\sum\\vec{i}(\\frac{d\\vec{A}}{dx}\\cdot\\vec{B})+\\sum(\\vec{A}\\cdot\\frac{d\\vec{B}}{dx})" ..............(i)
Now "\\vec{B}(\\vec{i}*\\frac{d\\vec{A}}{dx})=(\\vec{B}\\cdot\\frac{d\\vec{A}}{dx})\\vec{i}-(\\vec{B}\\cdot\\vec{i})\\frac{d\\vec{A}}{dx}"
"=(\\vec{B}\\cdot\\frac{d\\vec{A}}{dx})\\vec{i}=\\vec{B}*(\\vec{i}*\\frac{d\\vec{A}}{dx})+(\\vec{B}\\cdot\\vec{i})\\frac{d\\vec{A}}{dx}"
"\\therefore \\sum(\\vec{B}\\cdot\\frac{d\\vec{A}}{dx})\\vec{i}=\\vec{B}*(\\vec{i}*\\frac{d\\vec{A}}{dx})+(\\vec{B}\\cdot\\vec{i})\\frac{d\\vec{A}}{dx}"
"=\\vec{B}*\\sum(\\vec{i}*\\frac{d\\vec{A}}{dx})+(\\vec{B}\\cdot\\sum\\vec{i}\\frac{d}{dx})\\vec{A}"
"=\\vec{B}*(\\nabla*\\vec{A})+(\\vec{B}\\cdot\\nabla)\\vec{A}"
"\\therefore\\sum\\vec{i}(\\frac{d\\vec{A}}{dx}\\cdot\\vec{B})=\\vec{B}*(\\nabla*\\vec{A})+(\\vec{B}\\cdot\\nabla)\\vec{A}............(ii)"
Similarly, if we interchange the role of "\\vec{A}" and "\\vec{B}" we can prove;
"\\sum\\vec{i}(\\vec{A}\\cdot\\frac{d\\vec{B}}{dx})=\\vec{A}*(\\nabla*\\vec{B})+(\\vec{A}\\cdot\\nabla)\\vec{B}............(iii)"
Substituting (ii) and (iii) in (i), we get:
"\\nabla(\\vec{A}\\cdot\\vec{B})=(\\vec{B}\\cdot\\nabla)\\vec{A}+(\\vec{A}\\cdot\\nabla)\\vec{B}+\\vec{B}*(\\nabla*\\vec{A})+\\vec{A}*(\\nabla*\\vec{A})"
Comments
Leave a comment