[SADT9] The Laplacian of a function f of n variables x 1 ,x 2 ,*** x n denoted nabla^ 2 f is defined by
nabla^ 2 f(x 1 ,x 2 ,***,x n ):= partial^ 2 f partial x 1 ^ 2 + partial^ 2 f partial x 2 ^ 2 +***+ partial^ 2 f partial x n ^ 2
Now assume that f depends only on r where r=(x 1 ^ 2 +x 2 ^ 2 +***+x n ^ 2 )^ 1 2 i.e. f(x 1 ,x 2 ,***,x n )=g(r) for some function g. Show that, for x 1 ,x 2 ,***,x n ne0 ,
nabla^ 2 f= n-1 r g^ prime (r)+g^ prime prime (r)
r=(x 1 ^ 2 +x 2 ^ 2 +***+x n ^ 2 )^ 1 2 i.e. f(x 1 ,x 2 ,***,x n )=g(r) for some function g. Show that, for x 1 ,x 2 ,***,x n ne0 ,nabla^ 2 f= n-1 r g^ prime (r)+g^ prime prime (r)
Comments