[SADT9] The Laplacian of a function f of n variables x 1 ,x 2 ,*** x n denoted nabla^ 2 f is defined by
nabla^ 2 f(x 1 ,x 2 ,***,x n ):= partial^ 2 f partial x 1 ^ 2 + partial^ 2 f partial x 2 ^ 2 +***+ partial^ 2 f partial x n ^ 2
Now assume that f depends only on r where r=(x 1 ^ 2 +x 2 ^ 2 +***+x n ^ 2 )^ 1 2 i.e. f(x 1 ,x 2 ,***,x n )=g(r) for some function g. Show that, for x 1 ,x 2 ,***,x n ne0 ,
nabla^ 2 f= n-1 r g^ prime (r)+g^ prime prime (r)
r=(x 1 ^ 2 +x 2 ^ 2 +***+x n ^ 2 )^ 1 2 i.e. f(x 1 ,x 2 ,***,x n )=g(r) for some function g. Show that, for x 1 ,x 2 ,***,x n ne0 ,nabla^ 2 f= n-1 r g^ prime (r)+g^ prime prime (r)
"r=\\sqrt{x_1^2+x_2^2+...+x_n^2}"
"f(x_ 1 ,x_ 2 ,...,x _n )=g(r)"
"\\frac{\\partial r}{\\partial x_n}=\\frac{x_n}{\\sqrt{x_1^2+x_2^2+...+x_n^2}}"
"\\frac{\\partial^2 r}{\\partial x^2_n}=\\frac{\\sqrt{x_1^2+x_2^2+...+x_n^2}-x^2_n\/\\sqrt{x_1^2+x_2^2+...+x_n^2}}{x_1^2+x_2^2+...+x_n^2}"
"\\nabla^2f=n\/r-\\frac{x_1^2+x_2^2+...+x_n^2}{\\sqrt{x_1^2+x_2^2+...+x_n^2}(x_1^2+x_2^2+...+x_n^2)}=\\frac{n-1}{r}"
Comments
Leave a comment