[SADT10] Let r=x hat i +y hat j +z hat k and r = ||r||
Show that:
nabla(lnr)= r r^ 2 .
and
nabla*(r^ n r)=0 .
"r=\\sqrt{x^2+y^2+z^2}"
"\\nabla(lnr)=\\frac{2xi+2yj+2zk}{2(x^2+y^2+z^2)}=r\/||r||^2"
"r^ n r=(x^2+y^2+z^2)^{n\/2}(xi+yj+zk)"
"\\nabla\\times(r^ n r)=(\\frac{\\partial (r^ n r)_z}{\\partial y}-\\frac{\\partial (r^ n r)_y}{\\partial z})i+(\\frac{\\partial (r^ n r)_x}{\\partial z}-\\frac{\\partial (r^ n r)_z}{\\partial x})j+(\\frac{\\partial (r^ n r)_y}{\\partial x}-\\frac{\\partial (r^ n r)_x}{\\partial y})k"
"\\frac{\\partial (r^ n r)_z}{\\partial y}=\\frac{\\partial (r^ n r)_y}{\\partial z}=yzn (x^2+y^2+z^2)^{n\/2-1}"
"\\frac{\\partial (r^ n r)_x}{\\partial z}=\\frac{\\partial (r^ n r)_z}{\\partial x}=xzn (x^2+y^2+z^2)^{n\/2-1}"
"\\frac{\\partial (r^ n r)_y}{\\partial x}=\\frac{\\partial (r^ n r)_x}{\\partial y}=xyn (x^2+y^2+z^2)^{n\/2-1}"
"\\nabla\\times(r^ n r)=0"
Comments
Leave a comment