r=x2+y2+z2
∇(lnr)=2(x2+y2+z2)2xi+2yj+2zk=r/∣∣r∣∣2
rnr=(x2+y2+z2)n/2(xi+yj+zk)
∇×(rnr)=(∂y∂(rnr)z−∂z∂(rnr)y)i+(∂z∂(rnr)x−∂x∂(rnr)z)j+(∂x∂(rnr)y−∂y∂(rnr)x)k
∂y∂(rnr)z=∂z∂(rnr)y=yzn(x2+y2+z2)n/2−1
∂z∂(rnr)x=∂x∂(rnr)z=xzn(x2+y2+z2)n/2−1
∂x∂(rnr)y=∂y∂(rnr)x=xyn(x2+y2+z2)n/2−1
∇×(rnr)=0
Comments