r = x 2 + y 2 + z 2 r=\sqrt{x^2+y^2+z^2} r = x 2 + y 2 + z 2
∇ ( l n r ) = 2 x i + 2 y j + 2 z k 2 ( x 2 + y 2 + z 2 ) = r / ∣ ∣ r ∣ ∣ 2 \nabla(lnr)=\frac{2xi+2yj+2zk}{2(x^2+y^2+z^2)}=r/||r||^2 ∇ ( l n r ) = 2 ( x 2 + y 2 + z 2 ) 2 x i + 2 y j + 2 z k = r /∣∣ r ∣ ∣ 2
r n r = ( x 2 + y 2 + z 2 ) n / 2 ( x i + y j + z k ) r^ n r=(x^2+y^2+z^2)^{n/2}(xi+yj+zk) r n r = ( x 2 + y 2 + z 2 ) n /2 ( x i + y j + z k )
∇ × ( r n r ) = ( ∂ ( r n r ) z ∂ y − ∂ ( r n r ) y ∂ z ) i + ( ∂ ( r n r ) x ∂ z − ∂ ( r n r ) z ∂ x ) j + ( ∂ ( r n r ) y ∂ x − ∂ ( r n r ) x ∂ y ) k \nabla\times(r^ n r)=(\frac{\partial (r^ n r)_z}{\partial y}-\frac{\partial (r^ n r)_y}{\partial z})i+(\frac{\partial (r^ n r)_x}{\partial z}-\frac{\partial (r^ n r)_z}{\partial x})j+(\frac{\partial (r^ n r)_y}{\partial x}-\frac{\partial (r^ n r)_x}{\partial y})k ∇ × ( r n r ) = ( ∂ y ∂ ( r n r ) z − ∂ z ∂ ( r n r ) y ) i + ( ∂ z ∂ ( r n r ) x − ∂ x ∂ ( r n r ) z ) j + ( ∂ x ∂ ( r n r ) y − ∂ y ∂ ( r n r ) x ) k
∂ ( r n r ) z ∂ y = ∂ ( r n r ) y ∂ z = y z n ( x 2 + y 2 + z 2 ) n / 2 − 1 \frac{\partial (r^ n r)_z}{\partial y}=\frac{\partial (r^ n r)_y}{\partial z}=yzn (x^2+y^2+z^2)^{n/2-1} ∂ y ∂ ( r n r ) z = ∂ z ∂ ( r n r ) y = yz n ( x 2 + y 2 + z 2 ) n /2 − 1
∂ ( r n r ) x ∂ z = ∂ ( r n r ) z ∂ x = x z n ( x 2 + y 2 + z 2 ) n / 2 − 1 \frac{\partial (r^ n r)_x}{\partial z}=\frac{\partial (r^ n r)_z}{\partial x}=xzn (x^2+y^2+z^2)^{n/2-1} ∂ z ∂ ( r n r ) x = ∂ x ∂ ( r n r ) z = x z n ( x 2 + y 2 + z 2 ) n /2 − 1
∂ ( r n r ) y ∂ x = ∂ ( r n r ) x ∂ y = x y n ( x 2 + y 2 + z 2 ) n / 2 − 1 \frac{\partial (r^ n r)_y}{\partial x}=\frac{\partial (r^ n r)_x}{\partial y}=xyn (x^2+y^2+z^2)^{n/2-1} ∂ x ∂ ( r n r ) y = ∂ y ∂ ( r n r ) x = x y n ( x 2 + y 2 + z 2 ) n /2 − 1
∇ × ( r n r ) = 0 \nabla\times(r^ n r)=0 ∇ × ( r n r ) = 0
Comments