Question #275801

[SADT10] Let r=x hat i +y hat j +z hat k and r = ||r||



Show that:



nabla(lnr)= r r^ 2 .



and



nabla*(r^ n r)=0 .

1
Expert's answer
2021-12-06T16:22:37-0500

r=x2+y2+z2r=\sqrt{x^2+y^2+z^2}


(lnr)=2xi+2yj+2zk2(x2+y2+z2)=r/r2\nabla(lnr)=\frac{2xi+2yj+2zk}{2(x^2+y^2+z^2)}=r/||r||^2


rnr=(x2+y2+z2)n/2(xi+yj+zk)r^ n r=(x^2+y^2+z^2)^{n/2}(xi+yj+zk)


×(rnr)=((rnr)zy(rnr)yz)i+((rnr)xz(rnr)zx)j+((rnr)yx(rnr)xy)k\nabla\times(r^ n r)=(\frac{\partial (r^ n r)_z}{\partial y}-\frac{\partial (r^ n r)_y}{\partial z})i+(\frac{\partial (r^ n r)_x}{\partial z}-\frac{\partial (r^ n r)_z}{\partial x})j+(\frac{\partial (r^ n r)_y}{\partial x}-\frac{\partial (r^ n r)_x}{\partial y})k


(rnr)zy=(rnr)yz=yzn(x2+y2+z2)n/21\frac{\partial (r^ n r)_z}{\partial y}=\frac{\partial (r^ n r)_y}{\partial z}=yzn (x^2+y^2+z^2)^{n/2-1}


(rnr)xz=(rnr)zx=xzn(x2+y2+z2)n/21\frac{\partial (r^ n r)_x}{\partial z}=\frac{\partial (r^ n r)_z}{\partial x}=xzn (x^2+y^2+z^2)^{n/2-1}


(rnr)yx=(rnr)xy=xyn(x2+y2+z2)n/21\frac{\partial (r^ n r)_y}{\partial x}=\frac{\partial (r^ n r)_x}{\partial y}=xyn (x^2+y^2+z^2)^{n/2-1}


×(rnr)=0\nabla\times(r^ n r)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS