Consider ∇(A⋅B)=∑i∂x∂(A⋅B)=∑i(∂x∂A⋅B+A⋅∂x∂B)
=∑i(∂x∂A⋅B)+∑i(A,∂x∂B)……(i)
Now B×(i×∂x∂A)=(B⋅∂x∂A)i−(B,i)∂x∂A
⇒(B⋅∂x∂A)i=B×(i×∂x∂A)+(B⋅i)∂x∂A
∴∑(B⋅∂x∂A)i=∑B×(i×∂x∂A)+∑(B⋅i)∂x∂A
=B×∑(i×∂x∂A)+(B⋅∑i∂x∂)A
=B×(∇×A)+(B⋅∇)A
∴∑i(∂x∂AB)=B×(∇×A)+(B⋅∇)A
Similarly, by interchanging the roles of A and B , we can prove
∑i(A⋅∂x∂B)=A×(∇×B)+(A⋅∇)B
Substituting (ii) and (iii) in (i), we get
∇(A⋅B)=B×(∇×A)+(B⋅∇)A+A×(∇×B)+(A⋅∇)B
Comments