Consider ∇ ( A ⃗ ⋅ B ⃗ ) = ∑ i ⃗ ∂ ∂ x ( A ⃗ ⋅ B ⃗ ) = ∑ i ⃗ ( ∂ A ⃗ ∂ x ⋅ B ⃗ + A ⃗ ⋅ ∂ B ⃗ ∂ x ) \nabla(\vec{A} \cdot \vec{B})=\sum \vec{i} \frac{\partial}{\partial x}(\vec{A} \cdot \vec{B})=\sum \vec{i}\left(\frac{\partial \vec{A}}{\partial x} \cdot \vec{B}+\vec{A} \cdot \frac{\partial \vec{B}}{\partial x}\right) ∇ ( A ⋅ B ) = ∑ i ∂ x ∂ ( A ⋅ B ) = ∑ i ( ∂ x ∂ A ⋅ B + A ⋅ ∂ x ∂ B )
= ∑ i ⃗ ( ∂ A ⃗ ∂ x ⋅ B ⃗ ) + ∑ i ( A ⃗ , ∂ B ⃗ ∂ x ) … … ( i ) =\sum \vec{i}\left(\frac{\partial \vec{A}}{\partial x} \cdot \vec{B}\right)+\sum_{i}\left(\vec{A}, \frac{\partial \vec{B}}{\partial x}\right) \ldots \ldots(i) = ∑ i ( ∂ x ∂ A ⋅ B ) + ∑ i ( A , ∂ x ∂ B ) …… ( i )
Now B ⃗ × ( i ⃗ × ∂ A ⃗ ∂ x ) = ( B ⃗ ⋅ ∂ A ⃗ ∂ x ) i ⃗ − ( B ⃗ , i ⃗ ) ∂ A ⃗ ∂ x \vec{B} \times\left(\vec{i} \times \frac{\partial \vec{A}}{\partial x}\right)=\left(\vec{B} \cdot \frac{\partial \vec{A}}{\partial x}\right) \vec{i}-(\vec{B}, \vec{i}) \frac{\partial \vec{A}}{\partial x} B × ( i × ∂ x ∂ A ) = ( B ⋅ ∂ x ∂ A ) i − ( B , i ) ∂ x ∂ A
⇒ ( B ⃗ ⋅ ∂ A ⃗ ∂ x ) i ⃗ = B ⃗ × ( i ⃗ × ∂ A ⃗ ∂ x ) + ( B ⃗ ⋅ i ⃗ ) ∂ A ⃗ ∂ x \Rightarrow\left(\vec{B} \cdot \frac{\partial \vec{A}}{\partial x}\right) \vec{i}=\vec{B} \times\left(\vec{i} \times \frac{\partial \vec{A}}{\partial x}\right)+(\vec{B} \cdot \vec{i}) \frac{\partial \vec{A}}{\partial x} ⇒ ( B ⋅ ∂ x ∂ A ) i = B × ( i × ∂ x ∂ A ) + ( B ⋅ i ) ∂ x ∂ A
∴ ∑ ( B ⃗ ⋅ ∂ A ⃗ ∂ x ) i ⃗ = ∑ B ⃗ × ( i ⃗ × ∂ A ⃗ ∂ x ) + ∑ ( B ⃗ ⋅ i ⃗ ) ∂ A ⃗ ∂ x \therefore \sum\left(\vec{B} \cdot \frac{\partial \vec{A}}{\partial x}\right) \vec{i}=\sum \vec{B} \times\left(\vec{i} \times \frac{\partial \vec{A}}{\partial x}\right)+\sum(\vec{B} \cdot \vec{i}) \frac{\partial \vec{A}}{\partial x} ∴ ∑ ( B ⋅ ∂ x ∂ A ) i = ∑ B × ( i × ∂ x ∂ A ) + ∑ ( B ⋅ i ) ∂ x ∂ A
= B ⃗ × ∑ ( i ⃗ × ∂ A ⃗ ∂ x ) + ( B ⃗ ⋅ ∑ i ⃗ ∂ ∂ x ) A ⃗ =\vec{B} \times \sum\left(\vec{i} \times \frac{\partial \vec{A}}{\partial x}\right)+\left(\vec{B} \cdot \sum \vec{i} \frac{\partial}{\partial x}\right) \vec{A} = B × ∑ ( i × ∂ x ∂ A ) + ( B ⋅ ∑ i ∂ x ∂ ) A
= B ⃗ × ( ∇ × A ⃗ ) + ( B ⃗ ⋅ ∇ ) A ⃗ =\vec{B} \times(\nabla \times \vec{A})+(\vec{B} \cdot \nabla) \vec{A} = B × ( ∇ × A ) + ( B ⋅ ∇ ) A
∴ ∑ i ⃗ ( ∂ A ⃗ ∂ x B ⃗ ) = B ⃗ × ( ∇ × A ⃗ ) + ( B ⃗ ⋅ ∇ ) A ⃗ \therefore \sum \vec{i}\left(\frac{\partial \vec{A}}{\partial x} \vec{B}\right)=\vec{B} \times(\nabla \times \vec{A})+(\vec{B} \cdot \nabla) \vec{A} ∴ ∑ i ( ∂ x ∂ A B ) = B × ( ∇ × A ) + ( B ⋅ ∇ ) A
Similarly, by interchanging the roles of A ⃗ \vec{A} A and B ⃗ \vec{B} B , we can prove
∑ i ⃗ ( A ⃗ ⋅ ∂ B ⃗ ∂ x ) = A ⃗ × ( ∇ × B ⃗ ) + ( A ⃗ ⋅ ∇ ) B ⃗ \sum \vec{i}\left(\vec{A} \cdot \frac{\partial \vec{B}}{\partial x}\right)=\vec{A} \times(\nabla \times \vec{B})+(\vec{A} \cdot \nabla) \vec{B} ∑ i ( A ⋅ ∂ x ∂ B ) = A × ( ∇ × B ) + ( A ⋅ ∇ ) B
Substituting (ii) and (iii) in (i), we get
∇ ( A ⃗ ⋅ B ⃗ ) = B ⃗ × ( ∇ × A ⃗ ) + ( B ⃗ ⋅ ∇ ) A ⃗ + A ⃗ × ( ∇ × B ⃗ ) + ( A ⃗ ⋅ ∇ ) B ⃗ \nabla(\vec{A} \cdot \vec{B})=\vec{B} \times(\nabla \times \vec{A})+(\vec{B} \cdot \nabla) \vec{A}+\vec{A} \times(\nabla \times \vec{B})+(\vec{A} \cdot \nabla) \vec{B} ∇ ( A ⋅ B ) = B × ( ∇ × A ) + ( B ⋅ ∇ ) A + A × ( ∇ × B ) + ( A ⋅ ∇ ) B
Comments