Question #275802

If A and Bare vector fields, prove the following:



nabla(A* B)=(B* nabla)A+(A* nabla)B+B*( nabla* A)+A*( nabla* B) .

1
Expert's answer
2021-12-07T07:03:34-0500

Consider (AB)=ix(AB)=i(AxB+ABx)\nabla(\vec{A} \cdot \vec{B})=\sum \vec{i} \frac{\partial}{\partial x}(\vec{A} \cdot \vec{B})=\sum \vec{i}\left(\frac{\partial \vec{A}}{\partial x} \cdot \vec{B}+\vec{A} \cdot \frac{\partial \vec{B}}{\partial x}\right)

=i(AxB)+i(A,Bx)(i)=\sum \vec{i}\left(\frac{\partial \vec{A}}{\partial x} \cdot \vec{B}\right)+\sum_{i}\left(\vec{A}, \frac{\partial \vec{B}}{\partial x}\right) \ldots \ldots(i)

Now B×(i×Ax)=(BAx)i(B,i)Ax\vec{B} \times\left(\vec{i} \times \frac{\partial \vec{A}}{\partial x}\right)=\left(\vec{B} \cdot \frac{\partial \vec{A}}{\partial x}\right) \vec{i}-(\vec{B}, \vec{i}) \frac{\partial \vec{A}}{\partial x}

(BAx)i=B×(i×Ax)+(Bi)Ax\Rightarrow\left(\vec{B} \cdot \frac{\partial \vec{A}}{\partial x}\right) \vec{i}=\vec{B} \times\left(\vec{i} \times \frac{\partial \vec{A}}{\partial x}\right)+(\vec{B} \cdot \vec{i}) \frac{\partial \vec{A}}{\partial x}

(BAx)i=B×(i×Ax)+(Bi)Ax\therefore \sum\left(\vec{B} \cdot \frac{\partial \vec{A}}{\partial x}\right) \vec{i}=\sum \vec{B} \times\left(\vec{i} \times \frac{\partial \vec{A}}{\partial x}\right)+\sum(\vec{B} \cdot \vec{i}) \frac{\partial \vec{A}}{\partial x}

=B×(i×Ax)+(Bix)A=\vec{B} \times \sum\left(\vec{i} \times \frac{\partial \vec{A}}{\partial x}\right)+\left(\vec{B} \cdot \sum \vec{i} \frac{\partial}{\partial x}\right) \vec{A}

=B×(×A)+(B)A=\vec{B} \times(\nabla \times \vec{A})+(\vec{B} \cdot \nabla) \vec{A}

i(AxB)=B×(×A)+(B)A\therefore \sum \vec{i}\left(\frac{\partial \vec{A}}{\partial x} \vec{B}\right)=\vec{B} \times(\nabla \times \vec{A})+(\vec{B} \cdot \nabla) \vec{A}

Similarly, by interchanging the roles of A\vec{A} and B\vec{B} , we can prove

 i(ABx)=A×(×B)+(A)B\sum \vec{i}\left(\vec{A} \cdot \frac{\partial \vec{B}}{\partial x}\right)=\vec{A} \times(\nabla \times \vec{B})+(\vec{A} \cdot \nabla) \vec{B}  

Substituting (ii) and (iii) in (i), we get

 (AB)=B×(×A)+(B)A+A×(×B)+(A)B\nabla(\vec{A} \cdot \vec{B})=\vec{B} \times(\nabla \times \vec{A})+(\vec{B} \cdot \nabla) \vec{A}+\vec{A} \times(\nabla \times \vec{B})+(\vec{A} \cdot \nabla) \vec{B}


 


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS