Given that U
is a function of x,y
and z
and A
a vector field, prove that:
∇×(UA)=(∇U)×A+U(∇×A).
Given:- U is a scalar function of x, y, z and A is a vector field
Let "A_{1}, A_{2}, A_{3}" are components of A
"\\therefore \\nabla \\cdot(U A)=\\frac{\\partial}{\\partial x}\\left(U A_{1}\\right)+\\frac{\\partial}{\\partial y}\\left(U A_{2}\\right)+\\frac{\\partial}{\\partial z}\\left(U A_{3}\\right)"
using product rule
"\\begin{aligned}\n\n\\nabla \\cdot(U A) &=\\left[\\left(\\frac{\\partial U}{\\partial x}\\right) A_{1}+U \\frac{\\partial A_{1}}{\\partial x}\\right]+\\left[\\left(\\frac{\\partial U}{\\partial y}\\right) A_{2}+U\\left(\\frac{\\partial A_{2}}{\\partial y}\\right)\\right] \\\\\n\n&+\\left[\\left(\\frac{\\partial U}{\\partial z}\\right) A_{3}+U\\left(\\frac{\\partial A_{3}}{\\partial z}\\right)\\right] \\\\\n\n&=\\frac{\\partial U}{\\partial x} A_{1}+\\frac{\\partial U}{\\partial y} A_{2}+\\frac{\\partial U}{\\partial z} A_{3}+U\\left(\\frac{\\partial A_{1}}{\\partial x}+\\frac{\\partial A_{2}}{\\partial y}+\\frac{\\partial A_{3}}{\\partial z}\\right) \\\\\n\n&=\\left(\\frac{\\partial U}{\\partial x} \\hat{\\imath}+\\frac{\\partial U}{\\partial y} \\hat{j}+\\frac{\\partial U}{\\partial z} \\hat{k}\\right) \\cdot\\left(A_{1} \\hat{i}+A_{2} \\hat{\\jmath}+A_{3} \\hat{k}\\right)+U(\\nabla \\cdot A)\n\n\\end{aligned}"
we recognize
"\\nabla \\cdot(\\cup A)=(\\nabla \\cup) \\cdot A+U(\\nabla \\cdot A) \\\\\n\n\\text { Hence proved }"
Comments
Leave a comment