Find dy/dx and d²y/dx² of;
x = theta + cos theta, y = 1 + sin theta
; theta = pi/6
i will use parameter t instead of theta
for parametric function
first derivative "y'_x" can be found as "{\\frac {y'_t} {x'_t}}"
second derivative "y''_{xx}" can be found as "{\\frac {(y'_x)'_t} {x'_t}}"
"y'_t=cos(t)"
"x'_t=1-sin(t)"
so,
"y'_x={\\frac {cos(t)} {1-sin(t)}}\\implies y'_x({\\frac {\\pi} 6})={\\frac {cos({\\frac {\\pi} 6})} {1-sin({\\frac {\\pi} 6})}}=\\sqrt3"
"(y'_x)'_t={\\frac {-sin(t)+sin^2(t)+cos^2(t)} {(1-sin(t))^2}}={\\frac 1 {(1-sin(t))}}"
so,
"y''_{xx}={\\frac 1 {(1-sin(t))^2}}\\implies y''_{xx}({\\frac {\\pi} 6})={\\frac1 {(1-sin({\\frac {\\pi} 6}))^2}}=4"
Comments
Leave a comment