Question #271921

Find dy/dx and d²y/dx² of;


x = theta + cos theta, y = 1 + sin theta


; theta = pi/6

1
Expert's answer
2022-01-26T18:24:51-0500

i will use parameter t instead of theta

for parametric function

first derivative yxy'_x can be found as ytxt{\frac {y'_t} {x'_t}}

second derivative yxxy''_{xx} can be found as (yx)txt{\frac {(y'_x)'_t} {x'_t}}


yt=cos(t)y'_t=cos(t)

xt=1sin(t)x'_t=1-sin(t)

so,

yx=cos(t)1sin(t)    yx(π6)=cos(π6)1sin(π6)=3y'_x={\frac {cos(t)} {1-sin(t)}}\implies y'_x({\frac {\pi} 6})={\frac {cos({\frac {\pi} 6})} {1-sin({\frac {\pi} 6})}}=\sqrt3


(yx)t=sin(t)+sin2(t)+cos2(t)(1sin(t))2=1(1sin(t))(y'_x)'_t={\frac {-sin(t)+sin^2(t)+cos^2(t)} {(1-sin(t))^2}}={\frac 1 {(1-sin(t))}}

so,

yxx=1(1sin(t))2    yxx(π6)=1(1sin(π6))2=4y''_{xx}={\frac 1 {(1-sin(t))^2}}\implies y''_{xx}({\frac {\pi} 6})={\frac1 {(1-sin({\frac {\pi} 6}))^2}}=4



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS