i will use parameter t instead of theta
for parametric function
first derivative y x ′ y'_x y x ′ can be found as y t ′ x t ′ {\frac {y'_t} {x'_t}} x t ′ y t ′
second derivative y x x ′ ′ y''_{xx} y xx ′′ can be found as ( y x ′ ) t ′ x t ′ {\frac {(y'_x)'_t} {x'_t}} x t ′ ( y x ′ ) t ′
y t ′ = c o s ( t ) y'_t=cos(t) y t ′ = cos ( t )
x t ′ = 1 − s i n ( t ) x'_t=1-sin(t) x t ′ = 1 − s in ( t )
so,
y x ′ = c o s ( t ) 1 − s i n ( t ) ⟹ y x ′ ( π 6 ) = c o s ( π 6 ) 1 − s i n ( π 6 ) = 3 y'_x={\frac {cos(t)} {1-sin(t)}}\implies y'_x({\frac {\pi} 6})={\frac {cos({\frac {\pi} 6})} {1-sin({\frac {\pi} 6})}}=\sqrt3 y x ′ = 1 − s in ( t ) cos ( t ) ⟹ y x ′ ( 6 π ) = 1 − s in ( 6 π ) cos ( 6 π ) = 3
( y x ′ ) t ′ = − s i n ( t ) + s i n 2 ( t ) + c o s 2 ( t ) ( 1 − s i n ( t ) ) 2 = 1 ( 1 − s i n ( t ) ) (y'_x)'_t={\frac {-sin(t)+sin^2(t)+cos^2(t)} {(1-sin(t))^2}}={\frac 1 {(1-sin(t))}} ( y x ′ ) t ′ = ( 1 − s in ( t ) ) 2 − s in ( t ) + s i n 2 ( t ) + co s 2 ( t ) = ( 1 − s in ( t )) 1
so,
y x x ′ ′ = 1 ( 1 − s i n ( t ) ) 2 ⟹ y x x ′ ′ ( π 6 ) = 1 ( 1 − s i n ( π 6 ) ) 2 = 4 y''_{xx}={\frac 1 {(1-sin(t))^2}}\implies y''_{xx}({\frac {\pi} 6})={\frac1 {(1-sin({\frac {\pi} 6}))^2}}=4 y xx ′′ = ( 1 − s in ( t ) ) 2 1 ⟹ y xx ′′ ( 6 π ) = ( 1 − s in ( 6 π ) ) 2 1 = 4
Comments