i will use parameter t instead of theta
for parametric function
first derivative yx′ can be found as xt′yt′
second derivative yxx′′ can be found as xt′(yx′)t′
yt′=cos(t)
xt′=1−sin(t)
so,
yx′=1−sin(t)cos(t)⟹yx′(6π)=1−sin(6π)cos(6π)=3
(yx′)t′=(1−sin(t))2−sin(t)+sin2(t)+cos2(t)=(1−sin(t))1
so,
yxx′′=(1−sin(t))21⟹yxx′′(6π)=(1−sin(6π))21=4
Comments