Find dy/dx and d²y/dx²;
x=√t, y=2t+4 ; t=1
"x = \\sqrt t \\Rightarrow \\frac{{dx}}{{dt}} = \\frac{1}{{2\\sqrt t }}"
"y = 2t + 4 \\Rightarrow \\frac{{dy}}{{dt}} = 2"
Then
"\\frac{{dy}}{{dx}} = \\frac{{\\frac{{dy}}{{dt}}}}{{\\frac{{dx}}{{dt}}}} = \\frac{2}{{\\frac{1}{{2\\sqrt t }}}} = 4\\sqrt t \\Rightarrow {\\left. {\\frac{{dy}}{{dx}}} \\right|_{t = 1}} = 4"
"\\frac{d}{{dt}}\\left( {\\frac{{dy}}{{dx}}} \\right) = \\frac{4}{{2\\sqrt t }} = \\frac{2}{{\\sqrt t }}"
Then
"\\frac{{{d^2}y}}{{d{x^2}}} = \\frac{{\\frac{d}{{dt}}\\left( {\\frac{{dy}}{{dx}}} \\right)}}{{\\frac{{dx}}{{dt}}}} = \\frac{{\\frac{2}{{\\sqrt t }}}}{{\\frac{1}{{2\\sqrt t }}}} = \\frac{{4\\sqrt t }}{{\\sqrt t }} = 4 \\Rightarrow {\\left. {\\frac{{{d^2}y}}{{d{x^2}}}} \\right|_{t = 1}} = 4"
Answer: "{\\left. {\\frac{{dy}}{{dx}}} \\right|_{t = 1}} = 4" , "{\\left. {\\frac{{{d^2}y}}{{d{x^2}}}} \\right|_{t = 1}} = 4"
Comments
Leave a comment