x = t ⇒ d x d t = 1 2 t x = \sqrt t \Rightarrow \frac{{dx}}{{dt}} = \frac{1}{{2\sqrt t }} x = t ⇒ d t d x = 2 t 1
y = 2 t + 4 ⇒ d y d t = 2 y = 2t + 4 \Rightarrow \frac{{dy}}{{dt}} = 2 y = 2 t + 4 ⇒ d t d y = 2
Then
d y d x = d y d t d x d t = 2 1 2 t = 4 t ⇒ d y d x ∣ t = 1 = 4 \frac{{dy}}{{dx}} = \frac{{\frac{{dy}}{{dt}}}}{{\frac{{dx}}{{dt}}}} = \frac{2}{{\frac{1}{{2\sqrt t }}}} = 4\sqrt t \Rightarrow {\left. {\frac{{dy}}{{dx}}} \right|_{t = 1}} = 4 d x d y = d t d x d t d y = 2 t 1 2 = 4 t ⇒ d x d y ∣ ∣ t = 1 = 4
d d t ( d y d x ) = 4 2 t = 2 t \frac{d}{{dt}}\left( {\frac{{dy}}{{dx}}} \right) = \frac{4}{{2\sqrt t }} = \frac{2}{{\sqrt t }} d t d ( d x d y ) = 2 t 4 = t 2
Then
d 2 y d x 2 = d d t ( d y d x ) d x d t = 2 t 1 2 t = 4 t t = 4 ⇒ d 2 y d x 2 ∣ t = 1 = 4 \frac{{{d^2}y}}{{d{x^2}}} = \frac{{\frac{d}{{dt}}\left( {\frac{{dy}}{{dx}}} \right)}}{{\frac{{dx}}{{dt}}}} = \frac{{\frac{2}{{\sqrt t }}}}{{\frac{1}{{2\sqrt t }}}} = \frac{{4\sqrt t }}{{\sqrt t }} = 4 \Rightarrow {\left. {\frac{{{d^2}y}}{{d{x^2}}}} \right|_{t = 1}} = 4 d x 2 d 2 y = d t d x d t d ( d x d y ) = 2 t 1 t 2 = t 4 t = 4 ⇒ d x 2 d 2 y ∣ ∣ t = 1 = 4
Answer: d y d x ∣ t = 1 = 4 {\left. {\frac{{dy}}{{dx}}} \right|_{t = 1}} = 4 d x d y ∣ ∣ t = 1 = 4 , d 2 y d x 2 ∣ t = 1 = 4 {\left. {\frac{{{d^2}y}}{{d{x^2}}}} \right|_{t = 1}} = 4 d x 2 d 2 y ∣ ∣ t = 1 = 4
Comments