Find dy/dx and d²y/dx²;
x=√t, y=2t+4 ; t=1
x=t⇒dxdt=12tx = \sqrt t \Rightarrow \frac{{dx}}{{dt}} = \frac{1}{{2\sqrt t }}x=t⇒dtdx=2t1
y=2t+4⇒dydt=2y = 2t + 4 \Rightarrow \frac{{dy}}{{dt}} = 2y=2t+4⇒dtdy=2
Then
dydx=dydtdxdt=212t=4t⇒dydx∣t=1=4\frac{{dy}}{{dx}} = \frac{{\frac{{dy}}{{dt}}}}{{\frac{{dx}}{{dt}}}} = \frac{2}{{\frac{1}{{2\sqrt t }}}} = 4\sqrt t \Rightarrow {\left. {\frac{{dy}}{{dx}}} \right|_{t = 1}} = 4dxdy=dtdxdtdy=2t12=4t⇒dxdy∣∣t=1=4
ddt(dydx)=42t=2t\frac{d}{{dt}}\left( {\frac{{dy}}{{dx}}} \right) = \frac{4}{{2\sqrt t }} = \frac{2}{{\sqrt t }}dtd(dxdy)=2t4=t2
d2ydx2=ddt(dydx)dxdt=2t12t=4tt=4⇒d2ydx2∣t=1=4\frac{{{d^2}y}}{{d{x^2}}} = \frac{{\frac{d}{{dt}}\left( {\frac{{dy}}{{dx}}} \right)}}{{\frac{{dx}}{{dt}}}} = \frac{{\frac{2}{{\sqrt t }}}}{{\frac{1}{{2\sqrt t }}}} = \frac{{4\sqrt t }}{{\sqrt t }} = 4 \Rightarrow {\left. {\frac{{{d^2}y}}{{d{x^2}}}} \right|_{t = 1}} = 4dx2d2y=dtdxdtd(dxdy)=2t1t2=t4t=4⇒dx2d2y∣∣t=1=4
Answer: dydx∣t=1=4{\left. {\frac{{dy}}{{dx}}} \right|_{t = 1}} = 4dxdy∣∣t=1=4 , d2ydx2∣t=1=4{\left. {\frac{{{d^2}y}}{{d{x^2}}}} \right|_{t = 1}} = 4dx2d2y∣∣t=1=4
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment