Answer to Question #271920 in Calculus for Angel Nodado

Question #271920

Find dy/dx and d²y/dx²;


x=√t, y=2t+4 ; t=1

1
Expert's answer
2021-12-01T16:29:38-0500

x=tdxdt=12tx = \sqrt t \Rightarrow \frac{{dx}}{{dt}} = \frac{1}{{2\sqrt t }}

y=2t+4dydt=2y = 2t + 4 \Rightarrow \frac{{dy}}{{dt}} = 2

Then

dydx=dydtdxdt=212t=4tdydxt=1=4\frac{{dy}}{{dx}} = \frac{{\frac{{dy}}{{dt}}}}{{\frac{{dx}}{{dt}}}} = \frac{2}{{\frac{1}{{2\sqrt t }}}} = 4\sqrt t \Rightarrow {\left. {\frac{{dy}}{{dx}}} \right|_{t = 1}} = 4

ddt(dydx)=42t=2t\frac{d}{{dt}}\left( {\frac{{dy}}{{dx}}} \right) = \frac{4}{{2\sqrt t }} = \frac{2}{{\sqrt t }}

Then

d2ydx2=ddt(dydx)dxdt=2t12t=4tt=4d2ydx2t=1=4\frac{{{d^2}y}}{{d{x^2}}} = \frac{{\frac{d}{{dt}}\left( {\frac{{dy}}{{dx}}} \right)}}{{\frac{{dx}}{{dt}}}} = \frac{{\frac{2}{{\sqrt t }}}}{{\frac{1}{{2\sqrt t }}}} = \frac{{4\sqrt t }}{{\sqrt t }} = 4 \Rightarrow {\left. {\frac{{{d^2}y}}{{d{x^2}}}} \right|_{t = 1}} = 4

Answer: dydxt=1=4{\left. {\frac{{dy}}{{dx}}} \right|_{t = 1}} = 4 , d2ydx2t=1=4{\left. {\frac{{{d^2}y}}{{d{x^2}}}} \right|_{t = 1}} = 4



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment