Find the slope of the curve and the equation of tangent line of the parametric equation to the given point.
5. x=√t , y = 2t + 4 , t=1
Solution;
To find the equation of the tangent line, we need the slope m=dydxm=\frac{dy}{dx}m=dxdy and the point of tangency (xo,yo)(x_o,y_o)(xo,yo)
Then the equation is the usual;
(y−yo)=m(x−xo)(y-y_o)=m(x-x_o)(y−yo)=m(x−xo)
x=t,y=2t+4,t=1x=\sqrt t,y=2t+4,t=1x=t,y=2t+4,t=1
So we compute;
dxdt=1t\frac{dx}{dt}=\frac{1}{\sqrt t}dtdx=t1
dydt=2\frac{dy}{dt}=2dtdy=2
Therefore;
dydx=dydt.dtdx=2.t=2t\frac{dy}{dx}=\frac{dy}{dt}.\frac{dt}{dx}=2.\sqrt t=2\sqrt tdxdy=dtdy.dxdt=2.t=2t
Now put t=1;
m=dydx=21=2m=\frac{dy}{dx}=2\sqrt 1=2m=dxdy=21=2
Also ,at t=1, the original equations give;
xo=t=1=1x_o=\sqrt t=\sqrt 1=1xo=t=1=1
yo=2t+4=2(1)+4=6y_o=2t+4=2(1)+4=6yo=2t+4=2(1)+4=6
Now we put in the info for the tangent line:
y−yo=m(x−xo)y-y_o=m(x-x_o)y−yo=m(x−xo)
y−6=2(x−1)y-6=2(x-1)y−6=2(x−1)
y=2x+4y=2x+4y=2x+4
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments