Solution;
To find the equation of the tangent line, we need the slope m = d y d x m=\frac{dy}{dx} m = d x d y and the point of tangency ( x o , y o ) (x_o,y_o) ( x o , y o )
Then the equation is the usual;
( y − y o ) = m ( x − x o ) (y-y_o)=m(x-x_o) ( y − y o ) = m ( x − x o )
x = t , y = 2 t + 4 , t = 1 x=\sqrt t,y=2t+4,t=1 x = t , y = 2 t + 4 , t = 1
So we compute;
d x d t = 1 t \frac{dx}{dt}=\frac{1}{\sqrt t} d t d x = t 1
d y d t = 2 \frac{dy}{dt}=2 d t d y = 2
Therefore;
d y d x = d y d t . d t d x = 2. t = 2 t \frac{dy}{dx}=\frac{dy}{dt}.\frac{dt}{dx}=2.\sqrt t=2\sqrt t d x d y = d t d y . d x d t = 2. t = 2 t
Now put t=1;
m = d y d x = 2 1 = 2 m=\frac{dy}{dx}=2\sqrt 1=2 m = d x d y = 2 1 = 2
Also ,at t=1, the original equations give;
x o = t = 1 = 1 x_o=\sqrt t=\sqrt 1=1 x o = t = 1 = 1
y o = 2 t + 4 = 2 ( 1 ) + 4 = 6 y_o=2t+4=2(1)+4=6 y o = 2 t + 4 = 2 ( 1 ) + 4 = 6
Now we put in the info for the tangent line:
y − y o = m ( x − x o ) y-y_o=m(x-x_o) y − y o = m ( x − x o )
y − 6 = 2 ( x − 1 ) y-6=2(x-1) y − 6 = 2 ( x − 1 )
y = 2 x + 4 y=2x+4 y = 2 x + 4
Comments