Find the first and second derivatives of the following and simplify whenever possible:
x=e^t: y=te^-t
dydx=dydtdxdt=e−t−te−tet=(1−t)e−2t.\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{e^{-t}-te^{-t}}{e^t}=(1-t)e^{-2t}.dxdy=dtdxdtdy=ete−t−te−t=(1−t)e−2t.
d2ydx2=d2ydt2dxdt−dydtd2xdt2(dxdt)3=(t−2)e−t∗et−(1−t)e−t∗ete3t=(2t−3)e−3t.\frac{d^2y}{dx^2}=\frac{\frac{d^2y}{dt^2}\frac{dx}{dt}-\frac{dy}{dt}\frac{d^2x}{dt^2}}{(\frac{dx}{dt})^3}= \frac{(t-2)e^{-t}*e^t-(1-t)e^{-t}*e^t}{e^{3t}}=(2t-3)e^{-3t}.dx2d2y=(dtdx)3dt2d2ydtdx−dtdydt2d2x=e3t(t−2)e−t∗et−(1−t)e−t∗et=(2t−3)e−3t.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments