Question #271910

Find the first and second derivatives of the following and simplify whenever possible:



x=e^t: y=te^-t

1
Expert's answer
2021-11-29T08:29:56-0500

dydx=dydtdxdt=ettetet=(1t)e2t.\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{e^{-t}-te^{-t}}{e^t}=(1-t)e^{-2t}.

d2ydx2=d2ydt2dxdtdydtd2xdt2(dxdt)3=(t2)etet(1t)etete3t=(2t3)e3t.\frac{d^2y}{dx^2}=\frac{\frac{d^2y}{dt^2}\frac{dx}{dt}-\frac{dy}{dt}\frac{d^2x}{dt^2}}{(\frac{dx}{dt})^3}= \frac{(t-2)e^{-t}*e^t-(1-t)e^{-t}*e^t}{e^{3t}}=(2t-3)e^{-3t}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS