Find the first and second derivatives of the following and simplify whenever possible:
x = a cosh t; y=b sinh t
yx′=yt′xt′=bcoshtasinht=batanht,yxx′′=(yx′)t′xt′=ba⋅sinh2t−cosh2tsinh2tasinht=−ba2sinh3t.y'_x = \dfrac{y'_t} {x'_t} = \dfrac{b \cosh t}{a\sinh t} = \dfrac{b} {a\tanh t}, \\ \\ y''_{xx} = \dfrac{(y' _x) '_t} {x'_t} = \dfrac{\frac{b}{a}\cdot \dfrac{\sinh^2t-\cosh^2t}{\sinh^2t} } {a\sinh t} = - \dfrac{b} {a^2\sinh^3t}.yx′=xt′yt′=asinhtbcosht=atanhtb,yxx′′=xt′(yx′)t′=asinhtab⋅sinh2tsinh2t−cosh2t=−a2sinh3tb.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment