Find the first and second derivatives of the following and simplify whenever possible:
x = t ^ 2 * e ^ t y = t In t
"\\dfrac{dx}{dt}=2te^t+t^2e^t"
"\\dfrac{dy}{dt}=\\ln t+t(\\dfrac{1}{t})=\\ln t+1"
"\\dfrac{dy}{dx}=\\dfrac{dy\/dt}{dx\/dt}=\\dfrac{\\ln t+1}{2te^t+t^2e^t}"
"\\dfrac{d}{dt}(\\dfrac{dy}{dx})=\\dfrac{\\dfrac{1}{t}(2te^t+t^2e^t)-(2e^t+4te^t+t^2e^t)(\\ln t+1)}{(2te^t+t^2e^t)^2}"
"=\\dfrac{2e^t+te^t-(2e^t+4te^t+t^2e^t)\\ln t-2e^t-4te^t-t^2e^t}{(2te^t+t^2e^t)^2}"
"=-\\dfrac{3te^t+t^2e^t+(2e^t+4te^t+t^2e^t)\\ln t}{(2te^t+t^2e^t)^2}"
"\\dfrac{d^2y}{dx^2}=\\dfrac{\\dfrac{d}{dt}(\\dfrac{dy}{dx})}{dx\/dt}"
"=-\\dfrac{3te^t+t^2e^t+(2e^t+4te^t+t^2e^t)\\ln t}{(2te^t+t^2e^t)^3}"
Comments
Leave a comment