Question #271917

Find the curvature, the radius of curvature and the center of curvature having a parametric equations at the given point:



x = sin y, (1/2,1/6 π)



1
Expert's answer
2021-11-30T17:52:47-0500

Solution;

Radius of curvature;

R=(1+f(y0)2)32f(y0)R=\frac{(1+f'(y_0)^2)^{\frac32}}{f''(y_0)}

f(y)=sinyf(y)=sin y

f(y)=cosyf'(y)=cosy

f(y)=sinyf''(y)=-sin y

Hence;

R=(1+cos(30)2)32sin(30)=4.63R=\frac{(1+cos(30)^2)^{\frac32}}{-sin(30)}=-4.63

R=4.63R=4.63

Curvature;Curvature;

k=1Rk=\frac{1}{R}

k=14.63=0.216k=\frac{1}{4.63}=0.216

Center of curvature;

P=(x0+R),(y0+f(y0))RP=(x_0+R),(y_0+f'(y_0))R

P=(0.5+4.63),(π6+32)4.63P=(0.5+4.63),(\fracπ6+\frac{\sqrt3}{2})4.63

P=(5.13,6.4)P=(5.13,6.4)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS