Find the curvature, the radius of curvature and the center of curvature having a parametric equations at the given point:
x = sin y, (1/2,1/6 π)
Solution;
Radius of curvature;
"R=\\frac{(1+f'(y_0)^2)^{\\frac32}}{f''(y_0)}"
"f(y)=sin y"
"f'(y)=cosy"
"f''(y)=-sin y"
Hence;
"R=\\frac{(1+cos(30)^2)^{\\frac32}}{-sin(30)}=-4.63"
"R=4.63"
"Curvature;"
"k=\\frac{1}{R}"
"k=\\frac{1}{4.63}=0.216"
Center of curvature;
"P=(x_0+R),(y_0+f'(y_0))R"
"P=(0.5+4.63),(\\frac\u03c06+\\frac{\\sqrt3}{2})4.63"
"P=(5.13,6.4)"
Comments
Leave a comment