Find the curvature, the radius of curvature and the center of curvature having a parametric equations at the given point:
x = sin y, (1/2,1/6 π)
Solution;
Radius of curvature;
R=(1+f′(y0)2)32f′′(y0)R=\frac{(1+f'(y_0)^2)^{\frac32}}{f''(y_0)}R=f′′(y0)(1+f′(y0)2)23
f(y)=sinyf(y)=sin yf(y)=siny
f′(y)=cosyf'(y)=cosyf′(y)=cosy
f′′(y)=−sinyf''(y)=-sin yf′′(y)=−siny
Hence;
R=(1+cos(30)2)32−sin(30)=−4.63R=\frac{(1+cos(30)^2)^{\frac32}}{-sin(30)}=-4.63R=−sin(30)(1+cos(30)2)23=−4.63
R=4.63R=4.63R=4.63
Curvature;Curvature;Curvature;
k=1Rk=\frac{1}{R}k=R1
k=14.63=0.216k=\frac{1}{4.63}=0.216k=4.631=0.216
Center of curvature;
P=(x0+R),(y0+f′(y0))RP=(x_0+R),(y_0+f'(y_0))RP=(x0+R),(y0+f′(y0))R
P=(0.5+4.63),(π6+32)4.63P=(0.5+4.63),(\fracπ6+\frac{\sqrt3}{2})4.63P=(0.5+4.63),(6π+23)4.63
P=(5.13,6.4)P=(5.13,6.4)P=(5.13,6.4)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments