Answer to Question #271914 in Calculus for Angel Nodado

Question #271914

Find the slope of the curve and the equation of tangent line of the parametric equation to the given point.



x=ln t , y = t ^ - 1 , when t = 2

1
Expert's answer
2021-11-29T16:25:13-0500

Given that x=ln(t),y=t1x=ln(t),y=t^{-1}

dxdt=1t,dydt=1t2\therefore\frac{dx}{dt}=\frac{1}{t}, \frac{dy}{dt}=-\frac{1}{t^2}

So, dydx=dydtdxdt\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}\\

dydx=1t\Rightarrow \frac{dy}{dx}=-\frac{1}{t}

At t=2,dydx=12t=2, \frac{dy}{dx}=-\frac{1}{2}

The slope of curve at t=2t=2 is 12-\frac{1}{2}.

At t=2,x=ln(2),y=12t=2, x= ln(2),y=\frac{1}{2}

We can write:

t=ex,t=1yt=e^x,t=\frac{1}{y}

Therefore, equation of curve is: y=exy=e^{-x}

Equation of tangent at t=2t=2 is:

y12=12(xln(2))y-\frac{1}{2}=\frac{1}{2}(x-ln(2))

y=x2+1ln(2)2\therefore y=\frac{x}{2}+\frac{1-ln(2)}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment