Integration by Parts Fractions
1.) ∫(8t^3 + 13)dt/(t+2)(4t^2+1)
2.) ∫(5x^2 -3x+ 18)dx/x(9-x^2) from 1 to 2
"\\displaystyle\n(1)\\\\\n\\frac{8t^3 + 13}{(t+2)(4t^2+1)}= 2 - \\frac{3}{2 + t} - {4t - 6}{1 + 4 t^2}\\\\\n\n\\begin{aligned}\n\\int \\frac{8t^3 + 13}{(t+2)(4t^2+1)}\\,\\mathrm{d}t &= \\int 2 - \\frac{3}{2 + t} - \\frac{4t - 6}{1 + 4 t^2}\\,\\mathrm{d}t \n\\\\& = 2t - 3\\ln(2 + t)\n\\\\& - \\frac{\\ln(1 + 4t^2)}{2} + 3\\arctan(2t) + C\n\\end{aligned}\\\\\n\n(2)\\\\\n\\frac{5x^2 -3x+ 18}{x(9-x^2)} = \\frac{2}{x} - \\frac{4}{x + 3} - \\frac{3}{x - 3}\\\\\n\n\\begin{aligned}\n\\int\\frac{5x^2 -3x+ 18}{x(9-x^2)} \\,\\mathrm{d}x &= \\int\\frac{2}{x}\\mathrm{d}x - \\int\\frac{4}{x + 3} + \\int \\frac{3}{3 - x}\\mathrm{d}x\n\\\\&= 2\\ln{x} - 4\\ln(x + 3) - 3\\ln(3 - x) + C\\\\\n\\int_1^2\\frac{5x^2 -3x+ 18}{x(9-x^2)} \\,\\mathrm{d}x &= 2\\ln(2) - 4\\ln(5) + 4\\ln(4) + 3\\ln(2)\n\\\\& = 13\\ln(2) - 4\\ln(5)\n\\end{aligned}"
Comments
Leave a comment