Question #185666

Integration by Parts Fractions


1.) ∫(8t^3 + 13)dt/(t+2)(4t^2+1)


2.) ∫(5x^2 -3x+ 18)dx/x(9-x^2) from 1 to 2


1
Expert's answer
2021-05-07T09:51:50-0400

(1)8t3+13(t+2)(4t2+1)=232+t4t61+4t28t3+13(t+2)(4t2+1)dt=232+t4t61+4t2dt=2t3ln(2+t)ln(1+4t2)2+3arctan(2t)+C(2)5x23x+18x(9x2)=2x4x+33x35x23x+18x(9x2)dx=2xdx4x+3+33xdx=2lnx4ln(x+3)3ln(3x)+C125x23x+18x(9x2)dx=2ln(2)4ln(5)+4ln(4)+3ln(2)=13ln(2)4ln(5)\displaystyle (1)\\ \frac{8t^3 + 13}{(t+2)(4t^2+1)}= 2 - \frac{3}{2 + t} - {4t - 6}{1 + 4 t^2}\\ \begin{aligned} \int \frac{8t^3 + 13}{(t+2)(4t^2+1)}\,\mathrm{d}t &= \int 2 - \frac{3}{2 + t} - \frac{4t - 6}{1 + 4 t^2}\,\mathrm{d}t \\& = 2t - 3\ln(2 + t) \\& - \frac{\ln(1 + 4t^2)}{2} + 3\arctan(2t) + C \end{aligned}\\ (2)\\ \frac{5x^2 -3x+ 18}{x(9-x^2)} = \frac{2}{x} - \frac{4}{x + 3} - \frac{3}{x - 3}\\ \begin{aligned} \int\frac{5x^2 -3x+ 18}{x(9-x^2)} \,\mathrm{d}x &= \int\frac{2}{x}\mathrm{d}x - \int\frac{4}{x + 3} + \int \frac{3}{3 - x}\mathrm{d}x \\&= 2\ln{x} - 4\ln(x + 3) - 3\ln(3 - x) + C\\ \int_1^2\frac{5x^2 -3x+ 18}{x(9-x^2)} \,\mathrm{d}x &= 2\ln(2) - 4\ln(5) + 4\ln(4) + 3\ln(2) \\& = 13\ln(2) - 4\ln(5) \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS