(1)(t+2)(4t2+1)8t3+13=2−2+t3−4t−61+4t2∫(t+2)(4t2+1)8t3+13dt=∫2−2+t3−1+4t24t−6dt=2t−3ln(2+t)−2ln(1+4t2)+3arctan(2t)+C(2)x(9−x2)5x2−3x+18=x2−x+34−x−33∫x(9−x2)5x2−3x+18dx∫12x(9−x2)5x2−3x+18dx=∫x2dx−∫x+34+∫3−x3dx=2lnx−4ln(x+3)−3ln(3−x)+C=2ln(2)−4ln(5)+4ln(4)+3ln(2)=13ln(2)−4ln(5)
Comments