Question #185636

Integration by Parts Fractions


1.) ∫dy/(y^2+2y)


2.) ∫(x^3+x+2)/(x^2-1)dx


1
Expert's answer
2021-04-27T09:17:26-0400

1)

dyy2+2y\int\dfrac{dy}{y^2+2y}

1y2+2y=Ay+By+2=A(y+2)+Byy(y+2)\dfrac{1}{y^2+2y}=\dfrac{A}{y}+\dfrac{B}{y+2}=\dfrac{A(y+2)+By}{y(y+2)}



y=0:2A=1=>A=12y=0: 2A=1=>A=\dfrac{1}{2}

y=2:2B=1=>B=12y=-2: -2B=1=>B=-\dfrac{1}{2}



dyy2+2y=12dyy12dyy+2\int\dfrac{dy}{y^2+2y}=\dfrac{1}{2}\int\dfrac{dy}{y}-\dfrac{1}{2}\int\dfrac{dy}{y+2}

=12lny12lny2+C=\dfrac{1}{2}\ln|y|-\dfrac{1}{2}\ln|y-2|+C

2)

x3+x+2x21dx=x3x+x+x+2x21dx\int\dfrac{x^3+x+2}{x^2-1}dx=\int\dfrac{x^3-x+x+x+2}{x^2-1}dx

=xdx+2(x+1)(x+1)(x1)dx=\int xdx+\int\dfrac{2(x+1)}{(x+1)(x-1)}dx

=x22+2dxx1=x22+2lnx1+C=\dfrac{x^2}{2}+2\int\dfrac{dx}{x-1}=\dfrac{x^2}{2}+2\ln|x-1|+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS