Use a triple integral in spherical coordinates to derive the volume of a sphere with radius a.
Solution
In cartessian coordinates dV = dxdydz. In spherical coordinates dV = r2sinϕdrdϕdϴ (r≥0, 0≤ϕ≤π).
V=∭VdV=∫0a∫0π∫02πr2sinϕdθdϕdr=∫0ar2dr∫0πsinϕdϕ∫02πdθ=V = \iiint_VdV = \int_0^a\int_0^\pi\int_0^{2\pi}r^2sin\phi d\theta d\phi dr = \int_0^ar^2dr \int_0^\pi sin\phi d\phi \int_0^{2\pi} d\theta =V=∭VdV=∫0a∫0π∫02πr2sinϕdθdϕdr=∫0ar2dr∫0πsinϕdϕ∫02πdθ=
=13a3(−cosπ+cos0)2π=4π3a3=\frac{1}{3}a^3 (-cos\pi+cos0)2\pi = \frac{4\pi}{3}a^3=31a3(−cosπ+cos0)2π=34πa3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments