Use a triple integral in spherical coordinates to derive the volume of a sphere with radius a.
Solution
In cartessian coordinates dV = dxdydz. In spherical coordinates dV = r2sinϕdrdϕdϴ (r≥0, 0≤ϕ≤π).
"V = \\iiint_VdV = \\int_0^a\\int_0^\\pi\\int_0^{2\\pi}r^2sin\\phi d\\theta d\\phi dr = \\int_0^ar^2dr \\int_0^\\pi sin\\phi d\\phi \\int_0^{2\\pi} d\\theta ="
"=\\frac{1}{3}a^3 (-cos\\pi+cos0)2\\pi = \\frac{4\\pi}{3}a^3"
Comments
Leave a comment