Evaluate the Integration of Rational Functions by Partial Fractions:
1. ∫ (x² +x-1/x³-x) dx
2. ∫ (x² -x+1/(x+1)³) dx
3. ∫ (x²+4x+10/x³ +2x² +5x) dx
4. ∫ (x²/(x-1)(x⁴ +8x² +16)) dx
Solution.
1)
"\\frac{A}{x}+\\frac{B}{x-1}+\\frac{C}{x+1}=\\frac{Ax^2-A+Bx^2+Bx+Cx^2-Cx}{x(x-1)(x+1)}=\\newline\n=\\frac{x^2+x-1}{x^3-x}."
From here
"\\begin{matrix}\n A+B+C=1,\\\\\n B-C=1,\\\\\n-A=-1.\n\\end{matrix}"
"A=1, B=\\frac{1}{2}, C=-\\frac{1}{2}."
We will have
"\\int \\frac{x^2+x-1}{x^3-x}dx=-\\frac{1}{2}\\int \\frac{1}{x+1}dx+\\int \\frac{1}{x}dx+\\frac{1}{2}\\int \\frac{1}{x-1}dx=\\newline\n=-\\frac{1}{2}\\ln|x+1|+\\ln|x|+\\frac{1}{2}\\ln|x-1|+C=\\newline\n=\\frac{\\ln|x-1|-\\ln|x+1|}{2}+\\ln|x|+C,\\newline\n\\text{where C is some constant.}"
2)
"\\frac{A}{x+1}+\\frac{B}{(x+1)^2}+\\frac{C}{(x+1)^3}=\\frac{Ax^2+2Ax+BA+Bx+B+C}{(x+1)^3}=\\newline\n=\\frac{x^2-x+1}{(x+1)^3}."
From here
"\\begin{matrix}\n A=1,\\\\\n 2A+B=-1,\\\\\nA+B+C=1.\n\\end{matrix}"
"A=1, B=-3, C=3."
We will have
"\\int \\frac{x^2-x+1}{(x+1)^3}dx=\\int \\frac{1}{x+1}dx-3\\int \\frac{1}{(x+1)^2}dx+3\\int \\frac{1}{(x+1)^3}dx=\\newline\n=\\ln|x+1|+\\frac{3}{x+1}-\\frac{3}{2(x+1)^2}+C=\\newline\n=\\ln|x+1|+\\frac{6x+3}{2x^2+4x+2}+C,\\newline\n\\text{where C is some constant.}"
3)
"\\frac{A}{x}+\\frac{Bx+C}{x^2+2x+5}=\\frac{Ax^2+2Ax+5A+Bx^2+Cx}{x(x^2+2x+5)}=\\newline\n=\\frac{x^2+4x+10}{x^3+2x^2+5x}."
From here
"\\begin{matrix}\n A+B=1,\\\\\n 2A+C=4,\\\\\n5A=10.\n\\end{matrix}"
"A=2, B=-1, C=0."
We will have
"\\int \\frac{x^2+4x+10}{x^3+2x^2+5x}dx=2\\int \\frac{1}{x}dx-\\int \\frac{x}{x^2+2x+5}dx=\\newline\n2\\int \\frac{1}{x}dx-\\int \\frac{d(x^2+2x+5)}{x^2+2x+5}+\\int \\frac{dx}{x^2+2x+5}=2\\ln|x|-\\frac{1}{2}\\ln|x^2+2x+5|+\\frac{1}{2}\\arctan{\\frac{x+1}{2}}+C,\\newline\n\\text{where C is some constant.}"
4)
"\\frac{A}{x-1}+\\frac{Bx+C}{x^2+4}+\\frac{Dx+E}{(x^2+4)^2}=\\frac{Ax^4+8Ax^2+16A+Bx^4+4Bx^2-Bx^3-4Bx+Cx^3+4Cx-Cx^2-4C+Dx^2-Dx+Ex-E}{(x-1)(x^2+4)^2}=\\newline\n=\\frac{x^2}{(x-1)(x^2+4)^2}."
From here
"\\begin{matrix}\n A+B=0,\\\\\n -B+C=0,\\\\\n8A+4B-C+D=1,\\\\\n-4B+4C-D+E=0,\\\\\n16A-4C-E=0.\n\\end{matrix}"
"A=\\frac{1}{25}, B=-\\frac{1}{25}, C=-\\frac{1}{25}, \\newline D=\\frac{4}{5}, E=\\frac{4}{5}."
We will have
"\\int \\frac{x^2}{(x-1)(x^4+8x^2+16}dx=\\frac{1}{25}\\int \\frac{1}{x-1}dx-\n\\frac{1}{25}(\\int \\frac{x}{x^2+4}dx+\\int \\frac{1}{x^2+4}dx)+\n\\frac{4}{5}(\\int \\frac{x}{(x^2+4)^2}dx+\\int \\frac{1}{(x^2+4)^2}dx)=\n\\frac{1}{25}\\ln|x-1|-\n\\frac{1}{25}(\\frac{\\ln(x^2+4)}{2}+\\frac{\\arctan \\frac{x}{2}}{2})+\n\\frac{4}{5}(-\\frac{1}{2(x^2+4)}+\\frac{\\arctan \\frac{x}{2}}{16}+\\frac{x}{8(x^2+4)})+C=\n\\frac{\\ln|x-1|}{25}-\\frac{\\ln(x^2+4)}{50}+\\frac{3\\arctan \\frac{x}{2}}{100}-\\frac{2}{5(x^2+4)}+\\frac{x}{10(x^2+4)}+C,\n\\text{where C is some constant.}"
Comments
Leave a comment