Question #184748

Evaluate the Integration of Rational Functions by Partial Fractions:


1. ∫ (x² +x-1/x³-x) dx

2. ∫ (x² -x+1/(x+1)³) dx

3. ∫ (x²+4x+10/x³ +2x² +5x) dx

4. ∫ (x²/(x-1)(x⁴ +8x² +16)) dx


1
Expert's answer
2021-04-29T12:09:39-0400

Solution.

1)


x2+x1x3xdx\int \frac{x^2+x-1}{x^3-x}dx

Ax+Bx1+Cx+1=Ax2A+Bx2+Bx+Cx2Cxx(x1)(x+1)==x2+x1x3x.\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}=\frac{Ax^2-A+Bx^2+Bx+Cx^2-Cx}{x(x-1)(x+1)}=\newline =\frac{x^2+x-1}{x^3-x}.

From here

A+B+C=1,BC=1,A=1.\begin{matrix} A+B+C=1,\\ B-C=1,\\ -A=-1. \end{matrix}

A=1,B=12,C=12.A=1, B=\frac{1}{2}, C=-\frac{1}{2}.

We will have

x2+x1x3xdx=121x+1dx+1xdx+121x1dx==12lnx+1+lnx+12lnx1+C==lnx1lnx+12+lnx+C,where C is some constant.\int \frac{x^2+x-1}{x^3-x}dx=-\frac{1}{2}\int \frac{1}{x+1}dx+\int \frac{1}{x}dx+\frac{1}{2}\int \frac{1}{x-1}dx=\newline =-\frac{1}{2}\ln|x+1|+\ln|x|+\frac{1}{2}\ln|x-1|+C=\newline =\frac{\ln|x-1|-\ln|x+1|}{2}+\ln|x|+C,\newline \text{where C is some constant.}

2)


x2x+1(x+1)3dx\int \frac{x^2-x+1}{(x+1)^3}dx

Ax+1+B(x+1)2+C(x+1)3=Ax2+2Ax+BA+Bx+B+C(x+1)3==x2x+1(x+1)3.\frac{A}{x+1}+\frac{B}{(x+1)^2}+\frac{C}{(x+1)^3}=\frac{Ax^2+2Ax+BA+Bx+B+C}{(x+1)^3}=\newline =\frac{x^2-x+1}{(x+1)^3}.

From here

A=1,2A+B=1,A+B+C=1.\begin{matrix} A=1,\\ 2A+B=-1,\\ A+B+C=1. \end{matrix}

A=1,B=3,C=3.A=1, B=-3, C=3.

We will have

x2x+1(x+1)3dx=1x+1dx31(x+1)2dx+31(x+1)3dx==lnx+1+3x+132(x+1)2+C==lnx+1+6x+32x2+4x+2+C,where C is some constant.\int \frac{x^2-x+1}{(x+1)^3}dx=\int \frac{1}{x+1}dx-3\int \frac{1}{(x+1)^2}dx+3\int \frac{1}{(x+1)^3}dx=\newline =\ln|x+1|+\frac{3}{x+1}-\frac{3}{2(x+1)^2}+C=\newline =\ln|x+1|+\frac{6x+3}{2x^2+4x+2}+C,\newline \text{where C is some constant.}

3)


x2+4x+10x3+2x2+5xdx\int \frac{x^2+4x+10}{x^3+2x^2+5x}dx

Ax+Bx+Cx2+2x+5=Ax2+2Ax+5A+Bx2+Cxx(x2+2x+5)==x2+4x+10x3+2x2+5x.\frac{A}{x}+\frac{Bx+C}{x^2+2x+5}=\frac{Ax^2+2Ax+5A+Bx^2+Cx}{x(x^2+2x+5)}=\newline =\frac{x^2+4x+10}{x^3+2x^2+5x}.

From here

A+B=1,2A+C=4,5A=10.\begin{matrix} A+B=1,\\ 2A+C=4,\\ 5A=10. \end{matrix}

A=2,B=1,C=0.A=2, B=-1, C=0.

We will have

x2+4x+10x3+2x2+5xdx=21xdxxx2+2x+5dx=21xdxd(x2+2x+5)x2+2x+5+dxx2+2x+5=2lnx12lnx2+2x+5+12arctanx+12+C,where C is some constant.\int \frac{x^2+4x+10}{x^3+2x^2+5x}dx=2\int \frac{1}{x}dx-\int \frac{x}{x^2+2x+5}dx=\newline 2\int \frac{1}{x}dx-\int \frac{d(x^2+2x+5)}{x^2+2x+5}+\int \frac{dx}{x^2+2x+5}=2\ln|x|-\frac{1}{2}\ln|x^2+2x+5|+\frac{1}{2}\arctan{\frac{x+1}{2}}+C,\newline \text{where C is some constant.}

4)


x2(x1)(x4+8x2+16)dx\int \frac{x^2}{(x-1)(x^4+8x^2+16)}dx

Ax1+Bx+Cx2+4+Dx+E(x2+4)2=Ax4+8Ax2+16A+Bx4+4Bx2Bx34Bx+Cx3+4CxCx24C+Dx2Dx+ExE(x1)(x2+4)2==x2(x1)(x2+4)2.\frac{A}{x-1}+\frac{Bx+C}{x^2+4}+\frac{Dx+E}{(x^2+4)^2}=\frac{Ax^4+8Ax^2+16A+Bx^4+4Bx^2-Bx^3-4Bx+Cx^3+4Cx-Cx^2-4C+Dx^2-Dx+Ex-E}{(x-1)(x^2+4)^2}=\newline =\frac{x^2}{(x-1)(x^2+4)^2}.

From here

A+B=0,B+C=0,8A+4BC+D=1,4B+4CD+E=0,16A4CE=0.\begin{matrix} A+B=0,\\ -B+C=0,\\ 8A+4B-C+D=1,\\ -4B+4C-D+E=0,\\ 16A-4C-E=0. \end{matrix}

A=125,B=125,C=125,D=45,E=45.A=\frac{1}{25}, B=-\frac{1}{25}, C=-\frac{1}{25}, \newline D=\frac{4}{5}, E=\frac{4}{5}.

We will have

x2(x1)(x4+8x2+16dx=1251x1dx125(xx2+4dx+1x2+4dx)+45(x(x2+4)2dx+1(x2+4)2dx)=125lnx1125(ln(x2+4)2+arctanx22)+45(12(x2+4)+arctanx216+x8(x2+4))+C=lnx125ln(x2+4)50+3arctanx210025(x2+4)+x10(x2+4)+C,where C is some constant.\int \frac{x^2}{(x-1)(x^4+8x^2+16}dx=\frac{1}{25}\int \frac{1}{x-1}dx- \frac{1}{25}(\int \frac{x}{x^2+4}dx+\int \frac{1}{x^2+4}dx)+ \frac{4}{5}(\int \frac{x}{(x^2+4)^2}dx+\int \frac{1}{(x^2+4)^2}dx)= \frac{1}{25}\ln|x-1|- \frac{1}{25}(\frac{\ln(x^2+4)}{2}+\frac{\arctan \frac{x}{2}}{2})+ \frac{4}{5}(-\frac{1}{2(x^2+4)}+\frac{\arctan \frac{x}{2}}{16}+\frac{x}{8(x^2+4)})+C= \frac{\ln|x-1|}{25}-\frac{\ln(x^2+4)}{50}+\frac{3\arctan \frac{x}{2}}{100}-\frac{2}{5(x^2+4)}+\frac{x}{10(x^2+4)}+C, \text{where C is some constant.}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS