Solution.
1)
∫x3−xx2+x−1dxxA+x−1B+x+1C=x(x−1)(x+1)Ax2−A+Bx2+Bx+Cx2−Cx==x3−xx2+x−1.
From here
A+B+C=1,B−C=1,−A=−1.
A=1,B=21,C=−21.
We will have
∫x3−xx2+x−1dx=−21∫x+11dx+∫x1dx+21∫x−11dx==−21ln∣x+1∣+ln∣x∣+21ln∣x−1∣+C==2ln∣x−1∣−ln∣x+1∣+ln∣x∣+C,where C is some constant.
2)
∫(x+1)3x2−x+1dxx+1A+(x+1)2B+(x+1)3C=(x+1)3Ax2+2Ax+BA+Bx+B+C==(x+1)3x2−x+1.
From here
A=1,2A+B=−1,A+B+C=1.
A=1,B=−3,C=3.
We will have
∫(x+1)3x2−x+1dx=∫x+11dx−3∫(x+1)21dx+3∫(x+1)31dx==ln∣x+1∣+x+13−2(x+1)23+C==ln∣x+1∣+2x2+4x+26x+3+C,where C is some constant.
3)
∫x3+2x2+5xx2+4x+10dxxA+x2+2x+5Bx+C=x(x2+2x+5)Ax2+2Ax+5A+Bx2+Cx==x3+2x2+5xx2+4x+10.
From here
A+B=1,2A+C=4,5A=10.
A=2,B=−1,C=0.
We will have
∫x3+2x2+5xx2+4x+10dx=2∫x1dx−∫x2+2x+5xdx=2∫x1dx−∫x2+2x+5d(x2+2x+5)+∫x2+2x+5dx=2ln∣x∣−21ln∣x2+2x+5∣+21arctan2x+1+C,where C is some constant.
4)
∫(x−1)(x4+8x2+16)x2dxx−1A+x2+4Bx+C+(x2+4)2Dx+E=(x−1)(x2+4)2Ax4+8Ax2+16A+Bx4+4Bx2−Bx3−4Bx+Cx3+4Cx−Cx2−4C+Dx2−Dx+Ex−E==(x−1)(x2+4)2x2.
From here
A+B=0,−B+C=0,8A+4B−C+D=1,−4B+4C−D+E=0,16A−4C−E=0.
A=251,B=−251,C=−251,D=54,E=54.
We will have
∫(x−1)(x4+8x2+16x2dx=251∫x−11dx−251(∫x2+4xdx+∫x2+41dx)+54(∫(x2+4)2xdx+∫(x2+4)21dx)=251ln∣x−1∣−251(2ln(x2+4)+2arctan2x)+54(−2(x2+4)1+16arctan2x+8(x2+4)x)+C=25ln∣x−1∣−50ln(x2+4)+1003arctan2x−5(x2+4)2+10(x2+4)x+C,where C is some constant.
Comments