The Taylor′s series of f(x) about x=a isf(x)=f(a)+1f′(a)(x−a)+2!f′′(a)(x−a)2+3!f′′′(a)(x−a)3+....(1)Taking upto 3rd degree terms only we get the Taylor′s polynomial of degree 3⇒T3(x)=f(a)+1f′(a)(x−a)+2!f′′(a)(x−a)2+3!f′′′(a)(x−a)3...(2)We evalauate f(a), f′(a) ,f′′(a) and f′′′(a) at a=1 and substitute in(2)f(1)=e1ln(1)=0∵ln(1)=0f′(x)=dxd(exln(x))=exdxd(ln(x))+ln(x)dxd(ex)=exx1+ln(x)(ex)=ex(x1+ln(x))⇒f′(x)=ex(x1+ln(x))⇒f′(1)=e1(11+ln(1))=e∵ln(1)=0f′′(x)=dxd(f′(x))=dxd(ex(x1+ln(x))=exdxd(x1+ln(x))+(x1+ln(x))dxd(ex)=ex(−x21+x1)+(x1+ln(x))(ex)=ex(−x21+x2+ln(x))⇒f′′(x)=ex(−x21+x2+ln(x))⇒f′′(1)=e1(−121+12+ln(1))=ef′′′(x)=dxd(f′′(x))=dxd(ex(−x21+x2+ln(x)))=exdxd(−x21+x2+ln(x))+(−x21+x2+ln(x))dxd(ex)=ex(x32−x22+x1)+(−x21+x2+ln(x))(ex)=ex(x32−x23+x3+ln(x))⇒f′′′(x)=ex(x32−x23+x3+ln(x))⇒f′′′(1)=e1(132−123+13+ln(1))=2e⇒f′′′(1)=2eSubstituting the values of f(1), f′(1), f′′(1) and f′′′(1) in (2), we getT3(x)=f(1)+1f′(1)(x−1)+2!f′′(1)(x−1)2+3!f′′′(1)(x−1)3=0+e(x−1)+2!e(x−1)2+3!2e(x−1)3=e(x−1)+2e(x−1)2+3e(x−1)3∴,T3(x)=e((x−1)+21(x−1)2+31(x−1)3)
Comments
Leave a comment