Answer to Question #184476 in Calculus for Njabulo

Question #184476

 7. (Sections 9.1, 9.2) Consider the R − R function f defined by f (x) = e x ln x. Determine the third order Taylor polynomial T3 (x) of f about the point 1


1
Expert's answer
2021-05-07T09:12:07-0400

The Taylors series of f(x) about x=a isf(x)=f(a)+f(a)1(xa)+f(a)2!(xa)2+f(a)3!(xa)3+....(1)Taking upto 3rd degree terms only we get the Taylors polynomial of degree 3T3(x)=f(a)+f(a)1(xa)+f(a)2!(xa)2+f(a)3!(xa)3...(2)We evalauate f(a), f(a) ,f(a) and f(a) at a=1 and substitute in(2)f(1)=e1ln(1)=0ln(1)=0f(x)=ddx(exln(x))=exddx(ln(x))+ln(x)ddx(ex)=ex1x+ln(x)(ex)=ex(1x+ln(x))f(x)=ex(1x+ln(x))f(1)=e1(11+ln(1))=eln(1)=0f(x)=ddx(f(x))=ddx(ex(1x+ln(x))=exddx(1x+ln(x))+(1x+ln(x))ddx(ex)=ex(1x2+1x)+(1x+ln(x))(ex)=ex(1x2+2x+ln(x))f(x)=ex(1x2+2x+ln(x))f(1)=e1(112+21+ln(1))=ef(x)=ddx(f(x))=ddx(ex(1x2+2x+ln(x)))=exddx(1x2+2x+ln(x))+(1x2+2x+ln(x))ddx(ex)=ex(2x32x2+1x)+(1x2+2x+ln(x))(ex)=ex(2x33x2+3x+ln(x))f(x)=ex(2x33x2+3x+ln(x))f(1)=e1(213312+31+ln(1))=2ef(1)=2eSubstituting the values of f(1), f(1), f(1) and f(1) in (2), we getT3(x)=f(1)+f(1)1(x1)+f(1)2!(x1)2+f(1)3!(x1)3=0+e(x1)+e2!(x1)2+2e3!(x1)3=e(x1)+e2(x1)2+e3(x1)3,T3(x)=e((x1)+12(x1)2+13(x1)3)The \ Taylor's \ series \ of \ f(x) \ about \ x= a \ is \\ f(x)=f(a)+\frac{f'(a)}{1}(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+....(1)\\ Taking\ upto \ 3rd \ degree \ terms \ only \ we \ get \ the \ Taylor's \ polynomial \ of \ degree \ 3\\ \Rightarrow T_3(x)= f(a)+\frac{f'(a)}{1}(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3...(2)\\ We \ evalauate \ f(a), \ f'(a)\ , f''(a) \ and \ f'''(a)\ at \ a= 1 \ and \ substitute \ in (2)\\ f(1)=e^1ln(1)=0\because ln(1)=0\\ f'(x)=\frac{d}{dx}(e^xln(x))=e^x\frac{d}{dx}(ln(x))+ln(x)\frac{d}{dx}(e^x)\\ =e^x\frac{1}{x}+ln(x)(e^x)\\ =e^x(\frac{1}{x}+ln(x))\\ \Rightarrow f'(x)=e^x(\frac{1}{x}+ln(x))\\ \Rightarrow f'(1)=e^1(\frac{1}{1}+ln(1))=e \because ln(1)=0\\ f''(x)=\frac{d}{dx}(f'(x))\\ =\frac{d}{dx}(e^x(\frac{1}{x}+ln(x))\\ =e^x \frac{d}{dx}(\frac{1}{x}+ln(x))+(\frac{1}{x}+ln(x))\frac{d}{dx}(e^x)\\ =e^x (-\frac{1}{x^2}+\frac{1}{x})+(\frac{1}{x}+ln(x))(e^x)\\ =e^x (-\frac{1}{x^2}+\frac{2}{x}+ln(x))\\ \Rightarrow f''(x)=e^x (-\frac{1}{x^2}+\frac{2}{x}+ln(x))\\ \Rightarrow f''(1)=e^1 (-\frac{1}{1^2}+\frac{2}{1}+ln(1))=e\\ f'''(x)=\frac{d}{dx}(f''(x))\\ =\frac{d}{dx}(e^x (-\frac{1}{x^2}+\frac{2}{x}+ln(x)))\\ =e^x\frac{d}{dx}(-\frac{1}{x^2}+\frac{2}{x}+ln(x))+(-\frac{1}{x^2}+\frac{2}{x}+ln(x))\frac{d}{dx}(e^x)\\ =e^x(\frac{2}{x^3}-\frac{2}{x^2}+\frac{1}{x})+(-\frac{1}{x^2}+\frac{2}{x}+ln(x))(e^x)\\ =e^x(\frac{2}{x^3}-\frac{3}{x^2}+\frac{3}{x}+ln(x))\\ \Rightarrow f'''(x)=e^x(\frac{2}{x^3}-\frac{3}{x^2}+\frac{3}{x}+ln(x))\\ \Rightarrow f'''(1)=e^1(\frac{2}{1^3}-\frac{3}{1^2}+\frac{3}{1}+ln(1))=2e\\ \Rightarrow f'''(1)=2e\\ Substituting \ the \ values \ of \ f(1),\ f'(1),\ f''(1) \ and \ f'''(1) \ in \ (2), \ we \ get \\ T_3(x)= f(1)+\frac{f'(1)}{1}(x-1)+\frac{f''(1)}{2!}(x-1)^2+\frac{f'''(1)}{3!}(x-1)^3\\ =0+e(x-1)+\frac{e}{2!}(x-1)^2+\frac{2e}{3!}(x-1)^3\\ =e(x-1)+\frac{e}{2}(x-1)^2+\frac{e}{3}(x-1)^3\\ \therefore, T_3(x)=e((x-1)+\frac{1}{2}(x-1)^2+\frac{1}{3}(x-1)^3)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment