4. (Section 4.5) Consider the R 2 − R function f defined by f (x, y) = x 2 + y y . Determine each of the following limits, if it exists. (a) lim (x,y)→C1 (0,0) f (x, y), where C1 is the curve y = x. (2) (b) lim (x,y)→C2 (0,0) f (x, y), where C2 is the curve y = 2x. (2) (c) lim (x,y)→C3 (0,0) f (x, y), where C3 is the curve y = x 2 . (2) (d) lim (x,y)→(0,0) f (x, y).
Given, the function f:R2"\\to" R defined by f(x, y) = x2 + y2.
(a)
"\\lim_{(x,y) \\to (0,0)} f(x,y)= \\lim_{(x,y) \\to (0,0)}x^2+y^2 \\hspace{1cm}c1:y=x\\hspace{0.1cm} \\text{is the curve.}\\newline\n\\hspace{3cm}=\\lim_{x\\to 0}x^2+x^2 \\hspace{1cm}\\text{Substitude y=x.}\\newline\n\\hspace{3cm}=\\lim_{x\\to 0}2x^2\\newline\n\\hspace{3cm}=0"
(b)
"\\lim_{(x,y) \\to (0,0)} f(x,y)= \\lim_{(x,y) \\to (0,0)}x^2+y^2 \\hspace{1cm}c2:y=2x\\hspace{0.1cm} \\text{is the curve.}\\newline\n\\hspace{3cm}=\\lim_{x\\to 0}x^2+(2x)^2 \\hspace{1cm}\\text{Substitude y=2x.}\\newline\n\\hspace{3cm}=\\lim_{x\\to 0}5x^2\\newline\n\\hspace{3cm}=0"
(c)
"\\lim_{(x,y) \\to (0,0)} f(x,y)= \\lim_{(x,y) \\to (0,0)}x^2+y^2 \\hspace{1cm}c3:y=x^2\\hspace{0.1cm} \\text{is the curve.}\\newline\n\\hspace{3cm}=\\lim_{x\\to 0}x^2+(x^2)^2 \\hspace{1cm}\\text{Substitute}\\hspace{0.1cm}y=x^2 .\\newline\n\\hspace{3cm}=\\lim_{x\\to 0}x^2+x^4\\newline\n\\hspace{3cm}=0"
(d)
Let y=mx be the curve, where m is a constant.
"\\lim_{(x,y) \\to (0,0)} f(x,y)= \\lim_{(x,y) \\to (0,0)}x^2+y^2 \\hspace{1cm}c4:y=mx\\hspace{0.1cm} \\text{is the curve.}\\newline\n\\hspace{3cm}=\\lim_{x\\to 0}x^2+(mx)^2 \\hspace{1cm}\\text{Substitute}\\hspace{0.1cm}y=mx .\\newline\n\\hspace{3cm}=\\lim_{x\\to 0}x^2+m^2x^2\\newline\n\\hspace{3cm}=\\lim_{x\\to 0}x^2(1+m^2)\\newline\n\\hspace{3cm}=0"
Thus, in all parts limit exists.
Comments
Leave a comment