Given, the function f:R2→ R defined by f(x, y) = x2 + y2.
(a)
lim(x,y)→(0,0)f(x,y)=lim(x,y)→(0,0)x2+y2c1:y=xis the curve.=limx→0x2+x2Substitude y=x.=limx→02x2=0
(b)
lim(x,y)→(0,0)f(x,y)=lim(x,y)→(0,0)x2+y2c2:y=2xis the curve.=limx→0x2+(2x)2Substitude y=2x.=limx→05x2=0
(c)
lim(x,y)→(0,0)f(x,y)=lim(x,y)→(0,0)x2+y2c3:y=x2is the curve.=limx→0x2+(x2)2Substitutey=x2.=limx→0x2+x4=0
(d)
Let y=mx be the curve, where m is a constant.
lim(x,y)→(0,0)f(x,y)=lim(x,y)→(0,0)x2+y2c4:y=mxis the curve.=limx→0x2+(mx)2Substitutey=mx.=limx→0x2+m2x2=limx→0x2(1+m2)=0
Thus, in all parts limit exists.
Comments
Leave a comment