Answer to Question #184472 in Calculus for Njabulo

Question #184472

4. (Section 4.5) Consider the R 2 − R function f defined by f (x, y) = x 2 + y y . Determine each of the following limits, if it exists. (a) lim (x,y)→C1 (0,0) f (x, y), where C1 is the curve y = x. (2) (b) lim (x,y)→C2 (0,0) f (x, y), where C2 is the curve y = 2x. (2) (c) lim (x,y)→C3 (0,0) f (x, y), where C3 is the curve y = x 2 . (2) (d) lim (x,y)→(0,0) f (x, y).


1
Expert's answer
2021-05-04T15:34:51-0400

Given, the function f:R2\to R defined by f(x, y) = x2 + y2.

(a)

lim(x,y)(0,0)f(x,y)=lim(x,y)(0,0)x2+y2c1:y=xis the curve.=limx0x2+x2Substitude y=x.=limx02x2=0\lim_{(x,y) \to (0,0)} f(x,y)= \lim_{(x,y) \to (0,0)}x^2+y^2 \hspace{1cm}c1:y=x\hspace{0.1cm} \text{is the curve.}\newline \hspace{3cm}=\lim_{x\to 0}x^2+x^2 \hspace{1cm}\text{Substitude y=x.}\newline \hspace{3cm}=\lim_{x\to 0}2x^2\newline \hspace{3cm}=0

(b)

lim(x,y)(0,0)f(x,y)=lim(x,y)(0,0)x2+y2c2:y=2xis the curve.=limx0x2+(2x)2Substitude y=2x.=limx05x2=0\lim_{(x,y) \to (0,0)} f(x,y)= \lim_{(x,y) \to (0,0)}x^2+y^2 \hspace{1cm}c2:y=2x\hspace{0.1cm} \text{is the curve.}\newline \hspace{3cm}=\lim_{x\to 0}x^2+(2x)^2 \hspace{1cm}\text{Substitude y=2x.}\newline \hspace{3cm}=\lim_{x\to 0}5x^2\newline \hspace{3cm}=0


(c)

lim(x,y)(0,0)f(x,y)=lim(x,y)(0,0)x2+y2c3:y=x2is the curve.=limx0x2+(x2)2Substitutey=x2.=limx0x2+x4=0\lim_{(x,y) \to (0,0)} f(x,y)= \lim_{(x,y) \to (0,0)}x^2+y^2 \hspace{1cm}c3:y=x^2\hspace{0.1cm} \text{is the curve.}\newline \hspace{3cm}=\lim_{x\to 0}x^2+(x^2)^2 \hspace{1cm}\text{Substitute}\hspace{0.1cm}y=x^2 .\newline \hspace{3cm}=\lim_{x\to 0}x^2+x^4\newline \hspace{3cm}=0

(d)

Let y=mx be the curve, where m is a constant.

lim(x,y)(0,0)f(x,y)=lim(x,y)(0,0)x2+y2c4:y=mxis the curve.=limx0x2+(mx)2Substitutey=mx.=limx0x2+m2x2=limx0x2(1+m2)=0\lim_{(x,y) \to (0,0)} f(x,y)= \lim_{(x,y) \to (0,0)}x^2+y^2 \hspace{1cm}c4:y=mx\hspace{0.1cm} \text{is the curve.}\newline \hspace{3cm}=\lim_{x\to 0}x^2+(mx)^2 \hspace{1cm}\text{Substitute}\hspace{0.1cm}y=mx .\newline \hspace{3cm}=\lim_{x\to 0}x^2+m^2x^2\newline \hspace{3cm}=\lim_{x\to 0}x^2(1+m^2)\newline \hspace{3cm}=0


Thus, in all parts limit exists.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment