y=−2x2−4xy = -2x^2-4xy=−2x2−4x
First find x-intersepts:
−2x2−4x=0 ∣:(−2)x2+2x=0x(x+2)=0x=0,x=−2-2x^2-4x = 0 \ |:(-2)\\ x^2+2x = 0\\ x(x+2) = 0\\ x=0, x=-2−2x2−4x=0 ∣:(−2)x2+2x=0x(x+2)=0x=0,x=−2
So we need to integrate from -2 to 0 of y:
S=∫−20(−2x2−4x)dx=−2x33−2x2∣−20=0−0−(163−8)=8−163=223S = \int_{-2}^0(-2x^2-4x)dx = -\cfrac{2x^3}{3}-2x^2|_{-2}^0=0-0-(\cfrac{16}{3}-8) =8-\cfrac{16}{3} = 2\cfrac{2}3{}S=∫−20(−2x2−4x)dx=−32x3−2x2∣−20=0−0−(316−8)=8−316=232
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments