1.
Let r and n be the distance traveled by Reden and Neil respectively.
For Reden, "\\frac{dr}{dt}=60 cm\/s" and for Neil, "\\frac{dn}{dt}=80 cm\/s".
At time t=2s, the distance from the starting point are,
"r=2 \\times60=120cm\\newline\nn=2\\times 80=160cm"
Since, their movement form a right angle triangle.
Therefore, the distance between Reden and Neil after 2s is p and rate of increasing is given by "\\frac{dp}{dt}" .
By pythagorean theorem,
"p^2=r^2+n^2\\newline\np=\\sqrt{r^2+n^2}\\newline\n\\frac{dp}{dt}=\\frac{1}{2}(r^2+n^2)^{-1\/2}(2r\\frac{dr}{dt}+2n\\frac{dn}{dt})"
Putting the values,
"\\frac{dp}{dt}=\\frac{1}{2}(120^2+160^2)^{-1\/2}(2.120.60+2.160.80)\\newline\n\\hspace{0.4cm}=\\frac{1}{2}\\sqrt{120^2+160^2}\\newline\n\\hspace{0.4cm}=100 cm\/s"
Thus, the required rate is 100cm/s.
2.
Given, the rate of increasing of radius and height of the right circular cylinder is 3cm/s and 8cm/s.
Total surface area, a="2 \\pi rh+2\\pi r^2" .
Rate of total surface area,
"\\frac{da}{dt}=2\u03c0(r\\frac{dh}{dt}+h\\frac{dr}{dt})+4\u03c0r\\frac{dr}{dt}\\newline\n\\hspace{0.45cm}=2\u03c0(60.8+140.3)+4\u03c060.3\\newline\n\\hspace{0.45cm}=7916cm^2\/s"
Thus, the rate of change in total surface area is 7916cm2/s.
Comments
Leave a comment