Horizontal tangent at the point x = x 0 x=x_0 x = x 0 requires y ′ ( x = x 0 ) = 0 y'(x=x_0)=0 y ′ ( x = x 0 ) = 0 .
Let's apply operator d d x \frac{d}{dx} d x d to our expression, y y y being function y ( x ) y(x) y ( x ) :
x 4 + 2 x 2 y 2 + y 2 = x 2 − y 2 ∣ d d x x^4 +2x^2y^2+y^2=x^2-y^2 \quad \bigg | \frac{d}{dx} x 4 + 2 x 2 y 2 + y 2 = x 2 − y 2 ∣ ∣ d x d
4 x 3 + 4 x y 2 + 4 x 2 y y ′ + 4 y 3 y ′ = 2 x − 2 y y ′ 4x^3+4xy^2+4x^2yy'+4y^3y'=2x-2yy' 4 x 3 + 4 x y 2 + 4 x 2 y y ′ + 4 y 3 y ′ = 2 x − 2 y y ′
Substitute x = x 0 x=x_0 x = x 0 into this expression, remembering y ′ ( x = x 0 ) = 0 y'(x=x_0)=0 y ′ ( x = x 0 ) = 0 :
4 x 0 3 + 4 x 0 y ( x 0 ) = 2 x 0 4x_0^3+4x_0y(x_0)=2x_0 4 x 0 3 + 4 x 0 y ( x 0 ) = 2 x 0
Let y ( x 0 ) = y 0 y(x_0)=y_0 y ( x 0 ) = y 0 . We can also substitute x = x 0 x=x_0 x = x 0 into our initial expression. Then we get the system of two equations and y 0 y_0 y 0 and x 0 x_0 x 0 can be found.
{ 4 x 0 3 + 4 x 0 y 0 2 = 2 x 0 ( x 0 2 + y 0 2 ) 2 = x 0 2 − y 0 2 { x 0 2 + y 0 2 = 1 2 ( x 0 2 + y 0 2 ) 2 = x 0 2 − y 0 2 { x 0 2 = 1 2 − y 0 2 1 4 = 1 2 − 2 y 0 2 { x 0 2 = 3 8 y 0 2 = 1 8 \begin{cases}
4x_0^3+4x_0y_0^2=2x_0\\
(x_0^2+y_0^2)^2=x_0^2-y_0^2
\end{cases}\\
\begin{cases}
x_0^2+y_0^2=\frac{1}{2}\\
(x_0^2+y_0^2)^2=x_0^2-y_0^2
\end{cases}\\
\begin{cases}
x_0^2=\frac{1}{2}-y_0^2\\
\frac{1}{4}=\frac{1}{2}-2y_0^2
\end{cases}\\
\begin{cases}
x_0^2=\frac{3}{8}\\
y_0^2=\frac{1}{8}
\end{cases} { 4 x 0 3 + 4 x 0 y 0 2 = 2 x 0 ( x 0 2 + y 0 2 ) 2 = x 0 2 − y 0 2 { x 0 2 + y 0 2 = 2 1 ( x 0 2 + y 0 2 ) 2 = x 0 2 − y 0 2 { x 0 2 = 2 1 − y 0 2 4 1 = 2 1 − 2 y 0 2 { x 0 2 = 8 3 y 0 2 = 8 1
So we got four points where tanget is horizontal: ( 1 8 , 3 8 ) , ( − 1 8 , 3 8 ) , ( 1 8 , − 3 8 ) , ( − 1 8 , − 3 8 ) (\frac{1}{\sqrt{8}},\sqrt{\frac{3}{8}}), (-\frac{1}{\sqrt{8}},\sqrt{\frac{3}{8}}), (\frac{1}{\sqrt{8}},-\sqrt{\frac{3}{8}}), (-\frac{1}{\sqrt{8}},-\sqrt{\frac{3}{8}}) ( 8 1 , 8 3 ) , ( − 8 1 , 8 3 ) , ( 8 1 , − 8 3 ) , ( − 8 1 , − 8 3 )
Comments