Horizontal tangent at the point x=x0 requires y′(x=x0)=0.
Let's apply operator dxd to our expression, y being function y(x):
x4+2x2y2+y2=x2−y2∣∣dxd
4x3+4xy2+4x2yy′+4y3y′=2x−2yy′
Substitute x=x0 into this expression, remembering y′(x=x0)=0 :
4x03+4x0y(x0)=2x0
Let y(x0)=y0. We can also substitute x=x0 into our initial expression. Then we get the system of two equations and y0 and x0 can be found.
{4x03+4x0y02=2x0(x02+y02)2=x02−y02{x02+y02=21(x02+y02)2=x02−y02{x02=21−y0241=21−2y02{x02=83y02=81
So we got four points where tanget is horizontal: (81,83),(−81,83),(81,−83),(−81,−83)
Comments