Question #183259

Find all the points on the graph of (x^2 + y^2)^2 = x^2−y^2 that have horizontal tangent line.


1
Expert's answer
2021-05-04T11:40:16-0400

Horizontal tangent at the point x=x0x=x_0 requires y(x=x0)=0y'(x=x_0)=0.

Let's apply operator ddx\frac{d}{dx} to our expression, yy being function y(x)y(x):

x4+2x2y2+y2=x2y2ddxx^4 +2x^2y^2+y^2=x^2-y^2 \quad \bigg | \frac{d}{dx}

4x3+4xy2+4x2yy+4y3y=2x2yy4x^3+4xy^2+4x^2yy'+4y^3y'=2x-2yy'

Substitute x=x0x=x_0 into this expression, remembering y(x=x0)=0y'(x=x_0)=0 :

4x03+4x0y(x0)=2x04x_0^3+4x_0y(x_0)=2x_0

Let y(x0)=y0y(x_0)=y_0. We can also substitute x=x0x=x_0 into our initial expression. Then we get the system of two equations and y0y_0 and x0x_0 can be found.

{4x03+4x0y02=2x0(x02+y02)2=x02y02{x02+y02=12(x02+y02)2=x02y02{x02=12y0214=122y02{x02=38y02=18\begin{cases} 4x_0^3+4x_0y_0^2=2x_0\\ (x_0^2+y_0^2)^2=x_0^2-y_0^2 \end{cases}\\ \begin{cases} x_0^2+y_0^2=\frac{1}{2}\\ (x_0^2+y_0^2)^2=x_0^2-y_0^2 \end{cases}\\ \begin{cases} x_0^2=\frac{1}{2}-y_0^2\\ \frac{1}{4}=\frac{1}{2}-2y_0^2 \end{cases}\\ \begin{cases} x_0^2=\frac{3}{8}\\ y_0^2=\frac{1}{8} \end{cases}

So we got four points where tanget is horizontal: (18,38),(18,38),(18,38),(18,38)(\frac{1}{\sqrt{8}},\sqrt{\frac{3}{8}}), (-\frac{1}{\sqrt{8}},\sqrt{\frac{3}{8}}), (\frac{1}{\sqrt{8}},-\sqrt{\frac{3}{8}}), (-\frac{1}{\sqrt{8}},-\sqrt{\frac{3}{8}})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS