1.
∫ t c o s ( 2 t ) d t \int t cos (2t) dt ∫ t cos ( 2 t ) d t Integrate by parts
∫ f g ′ = f g − ∫ f ′ g f = t , g ′ = cos ( 2 t ) f ′ = 1 , g = sin ( 2 t ) 2 {\int}\mathtt{f}\mathtt{g}' = \mathtt{f}\mathtt{g} - {\int}\mathtt{f}'\mathtt{g}\\
f=t, g'=\cos\left(2t\right)\\
f'=1\, , g=\dfrac{\sin\left(2t\right)}{2}\\ ∫ f g ′ = fg − ∫ f ′ g f = t , g ′ = cos ( 2 t ) f ′ = 1 , g = 2 sin ( 2 t ) Now solving:
∫ sin ( 2 t ) 2 d t Substitute u = 2 t → d u d t = 2 → d t = 1 2 d u : = 1 4 ∫ sin ( u ) d u = − c o s ( u ) {\displaystyle\int}\dfrac{\sin\left(2t\right)}{2}\,\mathrm{d}t\\
\text{Substitute } u=2t \rightarrow \frac{du}{dt} =2 \rightarrow dt= \dfrac{1}{2}du:\\
= \frac{1}{4}\int \sin(u)du\\
=-cos(u) ∫ 2 sin ( 2 t ) d t Substitute u = 2 t → d t d u = 2 → d t = 2 1 d u : = 4 1 ∫ sin ( u ) d u = − cos ( u )
Plugging in solved integrals:
1 4 ∫ sin ( u ) d u = − c o s u 4 Recall that u = 2 t ∴ − c o s ( 2 t ) 4 \frac{1}{4}\int \sin(u)du\\
=-\frac{cos u}{4}\\
\text{ Recall that } u=2t\\
\therefore -\frac{cos (2t)}{4}\\ 4 1 ∫ sin ( u ) d u = − 4 cos u Recall that u = 2 t ∴ − 4 cos ( 2 t ) Plug in solved integrals,
t sin ( 2 t ) 2 − ∫ sin ( 2 t ) 2 d t = t sin ( 2 t ) 2 + cos ( 2 t ) 4 \dfrac{t\sin\left(2t\right)}{2}-{\displaystyle\int}\dfrac{\sin\left(2t\right)}{2}\,\mathrm{d}t\\
=\dfrac{t\sin\left(2t\right)}{2}+\dfrac{\cos\left(2t\right)}{4} 2 t sin ( 2 t ) − ∫ 2 sin ( 2 t ) d t = 2 t sin ( 2 t ) + 4 cos ( 2 t ) Thus:
∫ t cos ( 2 t ) d t = t sin ( 2 t ) 2 + cos ( 2 t ) 4 + C = t cos ( t ) sin ( t ) + cos 2 ( t ) 2 + C {\displaystyle\int}t\cos\left(2t\right)\,\mathrm{d}t =\dfrac{t\sin\left(2t\right)}{2}+\dfrac{\cos\left(2t\right)}{4}+C\\
=t\cos\left(t\right)\sin\left(t\right)+\dfrac{\cos^2\left(t\right)}{2}+C ∫ t cos ( 2 t ) d t = 2 t sin ( 2 t ) + 4 cos ( 2 t ) + C = t cos ( t ) sin ( t ) + 2 cos 2 ( t ) + C
2.
∫ x 3 ln x d x \int x^3 \ln x\; dx ∫ x 3 ln x d x
Integrate by parts: ∫ f g ′ = f g − ∫ f ′ g f = ln ( x ) , g ′ = x 3 f ′ = ↓ steps x , g = ↓ steps 4 = x 4 ln ( x ) 4 − ∫ x 3 4 d x Now solving: ∫ x 3 4 d x Apply linearity: = 1 4 ∫ x 3 d x Now solving: ∫ x 3 d x Apply power rule: ∫ x n d x = x n + 1 n + 1 with n = 3 : = x 4 4 Plug in solved integrals: 1 4 ∫ x 3 d x = x 4 16 Plug in solved integrals: x 4 ln ( x ) 4 − ∫ x 3 4 d x = x 4 ln ( x ) 4 − x 4 16 Thus ∫ x 3 ln ( x ) d x = x 4 ln ( x ) 4 − x 4 16 + C = x 4 ( 4 ln ( x ) − 1 ) 16 + C \text{Integrate by parts:} \\\,\\
\int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime}{\mathrm{g}}\\
f=\ln (x), g^{\prime}=x^{3}\\
\quad f^{\prime}=\frac{\downarrow_{\text {steps }}}{x}, \quad g=\frac{\downarrow_{\text {steps }}}{4}\\
=\frac{x^{4} \ln (x)}{4}-\int \frac{x^{3}}{4} d x\\
\text{Now solving:}\\\,\\
\int \frac{x^{3}}{4} d x\\
\text{Apply linearity:}\\\,\\
=\frac{1}{4} \int x^{3} d x\\
\text{Now solving:}\\
\int x^{3} d x\\
\text{Apply power rule:}\\
\begin{aligned} \int x^{n} d x=& \frac{x^{n+1}}{n+1} \text { with } n=3: \\ &=\frac{x^{4}}{4} \end{aligned}\\\,\\
\text{Plug in solved integrals:}\\
\frac{1}{4} \int x^{3} d x\\
=\frac{x^{4}}{16}\\\,\\
\text{Plug in solved integrals:}\\
\frac{x^{4} \ln (x)}{4}-\int \frac{x^{3}}{4} d x\\
=\frac{x^{4} \ln (x)}{4}-\frac{x^{4}}{16}\\\,\\
\text{Thus}\\
\int x^{3} \ln (x) d x=\frac{x^{4} \ln (x)}{4}-\frac{x^{4}}{16}+C\\
=\frac{x^{4}(4 \ln (x)-1)}{16}+C Integrate by parts: ∫ fg ′ = fg − ∫ f ′ g f = ln ( x ) , g ′ = x 3 f ′ = x ↓ steps , g = 4 ↓ steps = 4 x 4 ln ( x ) − ∫ 4 x 3 d x Now solving: ∫ 4 x 3 d x Apply linearity: = 4 1 ∫ x 3 d x Now solving: ∫ x 3 d x Apply power rule: ∫ x n d x = n + 1 x n + 1 with n = 3 : = 4 x 4 Plug in solved integrals: 4 1 ∫ x 3 d x = 16 x 4 Plug in solved integrals: 4 x 4 ln ( x ) − ∫ 4 x 3 d x = 4 x 4 ln ( x ) − 16 x 4 Thus ∫ x 3 ln ( x ) d x = 4 x 4 ln ( x ) − 16 x 4 + C = 16 x 4 ( 4 ln ( x ) − 1 ) + C
3.
∫ x 3 e 3 x d x {\displaystyle\int}x^3\mathrm{e}^{3x}\,\mathrm{d}x ∫ x 3 e 3 x d x
Using integration by parts
∫ x 3 e 3 x d x Integrate by parts: ∫ f g ′ = f g − ∫ f ′ g f = x 3 , g ′ = e 3 x f ′ = 3 x 2 , g = e 3 x 3 = x 3 e 3 x 3 − ∫ x 2 e 3 x d x Now solving: ∫ x 2 e 3 x d x I n t e g r a t e b y p a r t s : ∫ f g ′ = f g − ∫ f ′ g f = x 2 , g ′ = e 3 x f ′ = 2 x , g = e 3 x 3 = x 2 e 3 x 3 − ∫ 2 x e 3 x 3 d x Now solving: ∫ 2 x e 3 x 3 d x Apply linearity: = 2 3 ∫ x e 3 x d x Now solving: ∫ x e 3 x d x Integrate by parts: ∫ f g ′ = f g − ∫ f ′ g f = x , g ′ = e 3 x f ′ = 1 , g = e 3 x 3 = x e 3 x 3 − ∫ e 3 x 3 d x Now solving: ∫ e 3 x 3 d x Substitute u = 3 x ⟶ d u d x = 3 ⟶ d x = 1 3 d u : = 1 9 ∫ e u d u Now solving: ∫ e u d u Apply exponential rule: ∫ a u d u = a u ln ( a ) with a = e : = e u Plug in solved integrals : 1 9 ∫ e u d u = e u 9 Undo substitution u = 3 x : = e 3 x 9 Plug in solved integrals : x e 3 x 3 − ∫ e 3 x 3 d x = x e 3 x 3 − e 3 x 9 Plug in solved integrals : 2 3 ∫ x e 3 x d x = 2 x e 3 x 9 − 2 e 3 x 27 Plug in solved integrals : x 2 e 3 x 3 − ∫ 2 x e 3 x 3 d x = x 2 e 3 x 3 − 2 x e 3 x 9 + 2 e 3 x 27 Plug in solved integrals : x 3 e 3 x 3 − ∫ x 2 e 3 x d x = x 3 e 3 x 3 − x 2 e 3 x 3 + 2 x e 3 x 9 − 2 e 3 x 27 Thus: ∫ x 3 e 3 x d x = x 3 e 3 x 3 − x 2 e 3 x 3 + 2 x e 3 x 9 − 2 e 3 x 27 + C = ( 9 x 3 − 9 x 2 + 6 x − 2 ) e 3 x 27 + C \int x^{3} \mathrm{e}^{3 x} \mathrm{d} x\\\,\\
\text{Integrate by parts:} \\
\int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime} \mathrm{g}\\
\mathrm{f}=x^{3}, \mathrm{g}^{\prime}=\mathrm{e}^{3 x} \\
\mathrm{f}^{\prime}=3 x^{2}, \mathrm{~g}=\frac{\mathrm{e}^{3 x}}{3} \\
=\frac{x^{3} \mathrm{e}^{3 x}}{3}-\int x^{2} \mathrm{e}^{3 x} \mathrm{d} x\\
\,\\
\text{Now solving:}\\
\int x^{2} \mathrm{e}^{3 x} \mathrm{d} x\\\,\\
Integrate by parts: \\
\int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime} \mathrm{g}\\
\mathrm{f}=x^{2}, \mathrm{~g}^{\prime}=\mathrm{e}^{3 x} \\
\mathrm{f}^{\prime}=2 x, \mathrm{~g}=\frac{\mathrm{e}^{3 x}}{3} \\
=\frac{x^{2} \mathrm{e}^{3 x}}{3}-\int \frac{2 x \mathrm{e}^{3 x}}{3} \mathrm{d} x\\
\,\\
\text{Now solving:}
\\
\int \frac{2 x \mathrm{e}^{3 x}}{3} \mathrm{d} x
\\\,\\
\text{Apply linearity:}
=\frac{2}{3} \int x \mathrm{e}^{3 x} \mathrm{~d} x\\
\text{Now solving:}\\
\int x \mathrm{e}^{3 x} \mathrm{~d} x
\\\,\\
\text{Integrate by parts:} \\
\int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime} \mathrm{g}\\
\mathrm{f}=x, \mathrm{g}^{\prime}=\mathrm{e}^{3 x} \\
\mathrm{f}^{\prime}=1, \mathrm{g}=\frac{\mathrm{e}^{3 x}}{3} \\
=\frac{x \mathrm{e}^{3 x}}{3}-\int \frac{\mathrm{e}^{3 x}}{3} \mathrm{d} x
\\\,\\
\text{Now solving:}
\\
\int \frac{\mathrm{e}^{3 x}}{3} \mathrm{d} x \\
\text { Substitute } u=3 x \longrightarrow \frac{\mathrm{d} u}{\mathrm{d} x}=3 \longrightarrow \mathrm{d} x=\frac{1}{3} \mathrm{d} u: \\
=\frac{1}{9} \int \mathrm{e}^{u} \mathrm{d} u
\\\,\\
\text{Now solving:}
\\
\int \mathrm{e}^{u} \mathrm{d} u
\\\,\\
\text{Apply exponential rule:}\\
\int \mathrm{a}^{u} \mathrm{~d} u= \frac{\mathrm{a}^{u}}{\ln (\mathrm{a})} \text { with } \mathrm{a}=\mathrm{e}: \\
=\mathrm{e}^{u}\\\,\\
\text{Plug in solved integrals}:
\\
\frac{1}{9} \int \mathrm{e}^{u} \mathrm{~d} u \\
=\frac{\mathrm{e}^{u}}{9}\\
\\
\text{Undo substitution} u=3 x :
\\
=\frac{\mathrm{e}^{3 x}}{9}
\\
\text{Plug in solved integrals}:
\\
\frac{x \mathrm{e}^{3 x}}{3}-\int \frac{\mathrm{e}^{3 x}}{3} \mathrm{~d} x \\
=\frac{x \mathrm{e}^{3 x}}{3}-\frac{\mathrm{e}^{3 x}}{9}
\\
\text{Plug in solved integrals}:
\\
\frac{2}{3} \int x \mathrm{e}^{3 x} \mathrm{~d} x \\
=\frac{2 x \mathrm{e}^{3 x}}{9}-\frac{2 \mathrm{e}^{3 x}}{27}
\\
\text{Plug in solved integrals}:\\
\frac{x^{2} \mathrm{e}^{3 x}}{3}-\int \frac{2 x \mathrm{e}^{3 x}}{3} \mathrm{~d} x\\
=\frac{x^{2} \mathrm{e}^{3 x}}{3}-\frac{2 x \mathrm{e}^{3 x}}{9}+\frac{2 \mathrm{e}^{3 x}}{27}\\
\text{Plug in solved integrals}:\\
\frac{x^{3} \mathrm{e}^{3 x}}{3}-\int x^{2} \mathrm{e}^{3 x} \mathrm{~d} x\\
=\frac{x^{3} \mathrm{e}^{3 x}}{3}-\frac{x^{2} \mathrm{e}^{3 x}}{3}+\frac{2 x \mathrm{e}^{3 x}}{9}-\frac{2 \mathrm{e}^{3 x}}{27}\\
\text{Thus:}\\
\int x^{3} \mathrm{e}^{3 x} \mathrm{~d} x=\\\frac{x^{3} \mathrm{e}^{3 x}}{3}-\frac{x^{2} \mathrm{e}^{3 x}}{3}+\frac{2 x \mathrm{e}^{3 x}}{9}-\frac{2 \mathrm{e}^{3 x}}{27}+C\\
=\frac{\left(9 x^{3}-9 x^{2}+6 x-2\right) \mathrm{e}^{3 x}}{27}+C ∫ x 3 e 3 x d x Integrate by parts: ∫ fg ′ = fg − ∫ f ′ g f = x 3 , g ′ = e 3 x f ′ = 3 x 2 , g = 3 e 3 x = 3 x 3 e 3 x − ∫ x 2 e 3 x d x Now solving: ∫ x 2 e 3 x d x I n t e g r a t e b y p a r t s : ∫ fg ′ = fg − ∫ f ′ g f = x 2 , g ′ = e 3 x f ′ = 2 x , g = 3 e 3 x = 3 x 2 e 3 x − ∫ 3 2 x e 3 x d x Now solving: ∫ 3 2 x e 3 x d x Apply linearity: = 3 2 ∫ x e 3 x d x Now solving: ∫ x e 3 x d x Integrate by parts: ∫ fg ′ = fg − ∫ f ′ g f = x , g ′ = e 3 x f ′ = 1 , g = 3 e 3 x = 3 x e 3 x − ∫ 3 e 3 x d x Now solving: ∫ 3 e 3 x d x Substitute u = 3 x ⟶ d x d u = 3 ⟶ d x = 3 1 d u : = 9 1 ∫ e u d u Now solving: ∫ e u d u Apply exponential rule: ∫ a u d u = ln ( a ) a u with a = e : = e u Plug in solved integrals : 9 1 ∫ e u d u = 9 e u Undo substitution u = 3 x : = 9 e 3 x Plug in solved integrals : 3 x e 3 x − ∫ 3 e 3 x d x = 3 x e 3 x − 9 e 3 x Plug in solved integrals : 3 2 ∫ x e 3 x d x = 9 2 x e 3 x − 27 2 e 3 x Plug in solved integrals : 3 x 2 e 3 x − ∫ 3 2 x e 3 x d x = 3 x 2 e 3 x − 9 2 x e 3 x + 27 2 e 3 x Plug in solved integrals : 3 x 3 e 3 x − ∫ x 2 e 3 x d x = 3 x 3 e 3 x − 3 x 2 e 3 x + 9 2 x e 3 x − 27 2 e 3 x Thus: ∫ x 3 e 3 x d x = 3 x 3 e 3 x − 3 x 2 e 3 x + 9 2 x e 3 x − 27 2 e 3 x + C = 27 ( 9 x 3 − 9 x 2 + 6 x − 2 ) e 3 x + C
4.
∫ sin ( ln ( x ) ) d x \int{\sin{\left(\ln{\left(x \right)} \right)} d x} ∫ sin ( ln ( x ) ) d x
Substitute u = ln ( x ) ⟶ d u d x = 1 x = e u ⟶ d x = x d u , use: = ∫ e u sin ( u ) d u We will integrate by parts twice in a row: ∫ f g ′ = f g − ∫ f ′ g First time: f = sin ( u ) , g ′ = e u f ′ = cos ( u ) , g = e u = e u sin ( u ) − ∫ e u cos ( u ) d u Second time: f = cos ( u ) , g ′ = e u f ′ = − sin ( u ) , g = e u : = e u sin ( u ) − ( e u cos ( u ) − ∫ − e u sin ( u ) d u ) Apply linearity: = e u sin ( u ) − ( e u cos ( u ) + ∫ e u sin ( u ) d u ) The integral ∫ e u sin ( u ) d u appears again on the right side of the equation, we can solve for it: = e u sin ( u ) − e u cos ( u ) 2 Undo substitution u = ln ( x ) , use: e ln ( x ) = x = x sin ( ln ( x ) ) − x cos ( ln ( x ) ) 2 Thus ∫ sin ( ln ( x ) ) d x = x sin ( ln ( x ) ) − x cos ( ln ( x ) ) 2 + C ∫ sin ( ln ( x ) ) d x = x ( sin ( ln ( x ) ) − cos ( ln ( x ) ) ) 2 + C \begin{array}{c}
\text { Substitute } u=\ln (x) \longrightarrow \frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{x}=\mathrm{e}^{u} \longrightarrow \mathrm{d} x=x \mathrm{~d} u, \text { use: } \\
=\int \mathrm{e}^{u} \sin (u) \mathrm{d} u
\end{array}
\\
\text{ We will integrate by parts twice in a row: } \\
\int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime} \mathrm{g}\\
\text{ First time: }
\\ \mathbf{f}=\sin (u), \quad \mathrm{g}^{\prime}=\mathrm{e}^{u} \\
\begin{array}{c}\\
\mathbf{f}^{\prime}=\cos (u), \mathrm{g}=\mathrm{e}^{u} \\
=\mathrm{e}^{u} \sin (u)-\int \mathrm{e}^{u} \cos (u) \mathrm{d} u
\end{array}
\\
\text{ Second time:}
\\
\begin{array}{c}\\
\mathrm{f}=\cos (u), \quad \mathrm{g}^{\prime}=\mathrm{e}^{u} \\
\mathrm{f}^{\prime}=-\sin (u), \mathrm{g}=\mathrm{e}^{u}: \\
=\mathrm{e}^{u} \sin (u)-\left(\mathrm{e}^{u} \cos (u)-\int-\mathrm{e}^{u} \sin (u) \mathrm{d} u\right)
\end{array}\\
\text { Apply linearity: }\\
=\mathrm{e}^{u} \sin (u)-\left(\mathrm{e}^{u} \cos (u)+\int \mathrm{e}^{u} \sin (u) \mathrm{d} u\right)\\
\text{ The integral } \int \mathrm{e}^{u} \sin (u) \mathrm{d} u\\
\text{ appears again on the right side of the equation, we can solve for it: }\\
=\frac{\mathrm{e}^{u} \sin (u)-\mathrm{e}^{u} \cos (u)}{2}\\
\text{ Undo substitution } u=\ln (x), \text { use: }
\\
\begin{array}{c}\mathrm{e}^{\ln (x)}=x \\ =\frac{x \sin (\ln (x))-x \cos (\ln (x))}{2}\end{array}
\\
\text{Thus }\\
\int \sin (\ln (x)) \mathrm{d} x
=\frac{x \sin (\ln (x))-x \cos (\ln (x))}{2}+C\\
\int \sin (\ln (x)) \mathrm{d} x=\frac{x(\sin (\ln (x))-\cos (\ln (x)))}{2}+C\\ Substitute u = ln ( x ) ⟶ d x d u = x 1 = e u ⟶ d x = x d u , use: = ∫ e u sin ( u ) d u We will integrate by parts twice in a row: ∫ fg ′ = fg − ∫ f ′ g First time: f = sin ( u ) , g ′ = e u f ′ = cos ( u ) , g = e u = e u sin ( u ) − ∫ e u cos ( u ) d u Second time: f = cos ( u ) , g ′ = e u f ′ = − sin ( u ) , g = e u : = e u sin ( u ) − ( e u cos ( u ) − ∫ − e u sin ( u ) d u ) Apply linearity: = e u sin ( u ) − ( e u cos ( u ) + ∫ e u sin ( u ) d u ) The integral ∫ e u sin ( u ) d u appears again on the right side of the equation, we can solve for it: = 2 e u sin ( u ) − e u cos ( u ) Undo substitution u = ln ( x ) , use: e l n ( x ) = x = 2 x s i n ( l n ( x )) − x c o s ( l n ( x )) Thus ∫ sin ( ln ( x )) d x = 2 x sin ( ln ( x )) − x cos ( ln ( x )) + C ∫ sin ( ln ( x )) d x = 2 x ( sin ( ln ( x )) − cos ( ln ( x ))) + C 5.
∫ arcsin ( x ) d x Integrate by parts: ∫ f g ′ = f g − ∫ f ′ g f = arcsin ( x ) , g ′ = 1 f ′ = 1 1 − x 2 , g = x = x arcsin ( x ) − ∫ x 1 − x 2 d x Now solving: ∫ x 1 − x 2 d x Substitute u = 1 − x 2 ⟶ d u d x = − 2 x ⟶ d x = − 1 2 x d u : = − 1 2 ∫ 1 u d u Now solving: ∫ 1 u d u Apply power rule: ∫ u n d u = u n + 1 n + 1 with n = − 1 2 : = 2 u Plug in solved integrals: − 1 2 ∫ 1 u d u = − u Undo substitution u = 1 − x 2 = − 1 − x 2 Plug in solved integrals : x arcsin ( x ) − ∫ x 1 − x 2 d x = x arcsin ( x ) + 1 − x 2 Thus: ∫ arcsin ( x ) d x = x arcsin ( x ) + 1 − x 2 + C \int \arcsin (x) \mathrm{d} x\\
\text{ Integrate by parts: }\\
\int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime} \mathrm{g}\\
f=\arcsin (x), g^{\prime}=1 \\
{f^{\prime}}=\frac{1}{\sqrt{1-x^{2}}}, g=x \\
=x \arcsin (x)-\int \frac{x}{\sqrt{1-x^{2}}} \mathrm{~d} x\\
\text{ Now solving: }\\
\int \frac{x}{\sqrt{1-x^{2}}} d x\\
\text { Substitute } u=1-x^{2} \longrightarrow \frac{\mathrm{d} u}{\mathrm{~d} x}=-2 x \longrightarrow \mathrm{d} x=-\frac{1}{2 x} \mathrm{~d} u \text { : } \\ =-\frac{1}{2} \int \frac{1}{\sqrt{u}} \mathrm{~d} u\\
\text{ Now solving: }\\
\int \frac{1}{\sqrt{u}} \mathrm{~d} u
\text{ Apply power rule: }\\
\int u^{\mathrm{n}} \mathrm{d} u=\frac{u^{\mathrm{n}+1}}{\mathrm{n}+1} \text { with } \mathrm{n}=-\frac{1}{2}: \\
=2 \sqrt{u}
\\
\text{ Plug in solved integrals: }\\
-\frac{1}{2} \int \frac{1}{\sqrt{u}} \mathrm{~d} u\\
=-\sqrt{u}
\\
\text{ Undo substitution } \boldsymbol{u}=\mathbf{1}-\boldsymbol{x}^{2}\\
=-\sqrt{1-x^{2}}\\
\text{ Plug in solved integrals :}\\
x \arcsin (x)-\int \frac{x}{\sqrt{1-x^{2}}} \mathrm{~d} x\\
=x \arcsin (x)+\sqrt{1-x^{2}}\\
\text{ Thus: }\\
\int \arcsin (x) \mathrm{d} x
=x \arcsin (x)+\sqrt{1-x^{2}}+C ∫ arcsin ( x ) d x Integrate by parts: ∫ fg ′ = fg − ∫ f ′ g f = arcsin ( x ) , g ′ = 1 f ′ = 1 − x 2 1 , g = x = x arcsin ( x ) − ∫ 1 − x 2 x d x Now solving: ∫ 1 − x 2 x d x Substitute u = 1 − x 2 ⟶ d x d u = − 2 x ⟶ d x = − 2 x 1 d u : = − 2 1 ∫ u 1 d u Now solving: ∫ u 1 d u Apply power rule: ∫ u n d u = n + 1 u n + 1 with n = − 2 1 : = 2 u Plug in solved integrals: − 2 1 ∫ u 1 d u = − u Undo substitution u = 1 − x 2 = − 1 − x 2 Plug in solved integrals : x arcsin ( x ) − ∫ 1 − x 2 x d x = x arcsin ( x ) + 1 − x 2 Thus: ∫ arcsin ( x ) d x = x arcsin ( x ) + 1 − x 2 + C
6.
∫ y 3 e y 2 d y Substitute u = y 2 ⟶ d u d y = 2 y ⟶ d y = 1 2 y d u : = 1 2 ∫ u e u d u Now solving: ∫ u e u d u Integrate by parts: ∫ f g ′ = f g − ∫ f ′ g f = u , g ′ = e u f ′ = 1 , g = e u = u e u − ∫ e u d u Now solving: ∫ e u d u Apply exponential rule: ∫ a u d u = a u ln ( a ) with a = e : = e u Plug in solved integrals: u e u − ∫ e u d u = u e u − e u Plug in solved integrals: 1 2 ∫ u e u d u = u e u 2 − e u 2 Undo substitution u = y 2 : = y 2 e y 2 2 − e y 2 2 Thus: ∫ y 3 e y 2 d y = y 2 e y 2 2 − e y 2 2 + C ∫ y 3 e y 2 d y = ( y 2 − 1 ) e y 2 2 + C \int y^{3} \mathrm{e}^{y^{2}} \mathrm{~d} y \\
\text { Substitute } u=y^{2} \longrightarrow \frac{\mathrm{d} u}{\mathrm{~d} y}=2 y \longrightarrow \mathrm{d} y=\frac{1}{2 y} \mathrm{~d} u \text { : } \\= \frac{1}{2} \int u \mathrm{e}^{u} \mathrm{~d} u\\
\text{ Now solving: }
\int u \mathrm{e}^{u} \mathrm{~d} u\\
\text{ Integrate by parts: } \\
\int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime} \mathrm{g}\\
\begin{array}{l}
\mathrm{f}=u, \quad \mathrm{~g}^{\prime}=\mathrm{e}^{u} \\
\mathrm{f}^{\prime}=1, \mathrm{~g}=\mathrm{e}^{u} \\
=u \mathrm{e}^{u}-\int \mathrm{e}^{u} \mathrm{~d} u
\end{array}\\
\text{ Now solving: } \int \mathrm{e}^{u} \mathrm{~d} u\\
\text{ Apply exponential rule: }\\
\int a^{u} \mathrm{~d} u= \frac{\mathrm{a}^{u}}{\ln (\mathrm{a})} \text { with } \mathrm{a}=\mathrm{e}: \\ =\mathrm{e}^{u} \\
\text{ Plug in solved integrals: }\\
u \mathrm{e}^{u}-\int \mathrm{e}^{u} \mathrm{~d} u \\
=u \mathrm{e}^{u}-\mathrm{e}^{u}\\
\text{ Plug in solved integrals: }\\
\frac{1}{2} \int u \mathrm{e}^{u} \mathrm{~d} u \\
= \frac{u \mathrm{e}^{u}}{2}-\frac{\mathrm{e}^{u}}{2}\\
\text{ Undo substitution }\boldsymbol{u}=\boldsymbol{y}^{2} :\\
=\frac{y^{2} \mathrm{e}^{y^{2}}}{2}-\frac{\mathrm{e}^{y^{2}}}{2}\\
\text{ Thus: }\\
\int y^{3} \mathrm{e}^{y^{2}} \mathrm{~d} y =\frac{y^{2} \mathrm{e}^{y^{2}}}{2}-\frac{\mathrm{e}^{y^{2}}}{2}+C\\
\int y^{3} \mathrm{e}^{y^{2}} \mathrm{~d} y=\frac{\left(y^{2}-1\right) \mathrm{e}^{y^{2}}}{2}+C ∫ y 3 e y 2 d y Substitute u = y 2 ⟶ d y d u = 2 y ⟶ d y = 2 y 1 d u : = 2 1 ∫ u e u d u Now solving: ∫ u e u d u Integrate by parts: ∫ fg ′ = fg − ∫ f ′ g f = u , g ′ = e u f ′ = 1 , g = e u = u e u − ∫ e u d u Now solving: ∫ e u d u Apply exponential rule: ∫ a u d u = ln ( a ) a u with a = e : = e u Plug in solved integrals: u e u − ∫ e u d u = u e u − e u Plug in solved integrals: 2 1 ∫ u e u d u = 2 u e u − 2 e u Undo substitution u = y 2 : = 2 y 2 e y 2 − 2 e y 2 Thus: ∫ y 3 e y 2 d y = 2 y 2 e y 2 − 2 e y 2 + C ∫ y 3 e y 2 d y = 2 ( y 2 − 1 ) e y 2 + C
Comments