1.
"\\int t cos (2t) dt" Integrate by parts
"{\\int}\\mathtt{f}\\mathtt{g}' = \\mathtt{f}\\mathtt{g} - {\\int}\\mathtt{f}'\\mathtt{g}\\\\\nf=t, g'=\\cos\\left(2t\\right)\\\\\nf'=1\\, , g=\\dfrac{\\sin\\left(2t\\right)}{2}\\\\" Now solving:
"{\\displaystyle\\int}\\dfrac{\\sin\\left(2t\\right)}{2}\\,\\mathrm{d}t\\\\\n\\text{Substitute } u=2t \\rightarrow \\frac{du}{dt} =2 \\rightarrow dt= \\dfrac{1}{2}du:\\\\\n= \\frac{1}{4}\\int \\sin(u)du\\\\\n=-cos(u)"
Plugging in solved integrals:
"\\frac{1}{4}\\int \\sin(u)du\\\\\n=-\\frac{cos u}{4}\\\\\n\\text{ Recall that } u=2t\\\\\n\\therefore -\\frac{cos (2t)}{4}\\\\" Plug in solved integrals,
"\\dfrac{t\\sin\\left(2t\\right)}{2}-{\\displaystyle\\int}\\dfrac{\\sin\\left(2t\\right)}{2}\\,\\mathrm{d}t\\\\\n=\\dfrac{t\\sin\\left(2t\\right)}{2}+\\dfrac{\\cos\\left(2t\\right)}{4}" Thus:
"{\\displaystyle\\int}t\\cos\\left(2t\\right)\\,\\mathrm{d}t =\\dfrac{t\\sin\\left(2t\\right)}{2}+\\dfrac{\\cos\\left(2t\\right)}{4}+C\\\\\n=t\\cos\\left(t\\right)\\sin\\left(t\\right)+\\dfrac{\\cos^2\\left(t\\right)}{2}+C"
2.
"\\int x^3 \\ln x\\; dx"
"\\text{Integrate by parts:} \\\\\\,\\\\\n\\int \\mathrm{fg}^{\\prime}=\\mathrm{fg}-\\int \\mathrm{f}^{\\prime}{\\mathrm{g}}\\\\\nf=\\ln (x), g^{\\prime}=x^{3}\\\\\n\\quad f^{\\prime}=\\frac{\\downarrow_{\\text {steps }}}{x}, \\quad g=\\frac{\\downarrow_{\\text {steps }}}{4}\\\\\n=\\frac{x^{4} \\ln (x)}{4}-\\int \\frac{x^{3}}{4} d x\\\\\n\\text{Now solving:}\\\\\\,\\\\\n\\int \\frac{x^{3}}{4} d x\\\\\n\\text{Apply linearity:}\\\\\\,\\\\\n=\\frac{1}{4} \\int x^{3} d x\\\\\n\\text{Now solving:}\\\\\n\\int x^{3} d x\\\\\n\\text{Apply power rule:}\\\\\n\\begin{aligned} \\int x^{n} d x=& \\frac{x^{n+1}}{n+1} \\text { with } n=3: \\\\ &=\\frac{x^{4}}{4} \\end{aligned}\\\\\\,\\\\\n\\text{Plug in solved integrals:}\\\\\n\\frac{1}{4} \\int x^{3} d x\\\\\n=\\frac{x^{4}}{16}\\\\\\,\\\\\n\\text{Plug in solved integrals:}\\\\\n\\frac{x^{4} \\ln (x)}{4}-\\int \\frac{x^{3}}{4} d x\\\\\n=\\frac{x^{4} \\ln (x)}{4}-\\frac{x^{4}}{16}\\\\\\,\\\\\n\\text{Thus}\\\\\n\\int x^{3} \\ln (x) d x=\\frac{x^{4} \\ln (x)}{4}-\\frac{x^{4}}{16}+C\\\\\n=\\frac{x^{4}(4 \\ln (x)-1)}{16}+C"
3.
"{\\displaystyle\\int}x^3\\mathrm{e}^{3x}\\,\\mathrm{d}x"
Using integration by parts
"\\int x^{3} \\mathrm{e}^{3 x} \\mathrm{d} x\\\\\\,\\\\\n\\text{Integrate by parts:} \\\\\n\\int \\mathrm{fg}^{\\prime}=\\mathrm{fg}-\\int \\mathrm{f}^{\\prime} \\mathrm{g}\\\\\n\\mathrm{f}=x^{3}, \\mathrm{g}^{\\prime}=\\mathrm{e}^{3 x} \\\\\n\\mathrm{f}^{\\prime}=3 x^{2}, \\mathrm{~g}=\\frac{\\mathrm{e}^{3 x}}{3} \\\\\n=\\frac{x^{3} \\mathrm{e}^{3 x}}{3}-\\int x^{2} \\mathrm{e}^{3 x} \\mathrm{d} x\\\\\n\\,\\\\\n\\text{Now solving:}\\\\\n\\int x^{2} \\mathrm{e}^{3 x} \\mathrm{d} x\\\\\\,\\\\\nIntegrate by parts: \\\\\n\\int \\mathrm{fg}^{\\prime}=\\mathrm{fg}-\\int \\mathrm{f}^{\\prime} \\mathrm{g}\\\\\n\\mathrm{f}=x^{2}, \\mathrm{~g}^{\\prime}=\\mathrm{e}^{3 x} \\\\\n\\mathrm{f}^{\\prime}=2 x, \\mathrm{~g}=\\frac{\\mathrm{e}^{3 x}}{3} \\\\\n=\\frac{x^{2} \\mathrm{e}^{3 x}}{3}-\\int \\frac{2 x \\mathrm{e}^{3 x}}{3} \\mathrm{d} x\\\\\n\\,\\\\\n\\text{Now solving:}\n\\\\\n\\int \\frac{2 x \\mathrm{e}^{3 x}}{3} \\mathrm{d} x\n\\\\\\,\\\\\n\\text{Apply linearity:}\n\n=\\frac{2}{3} \\int x \\mathrm{e}^{3 x} \\mathrm{~d} x\\\\\n\n\\text{Now solving:}\\\\\n\\int x \\mathrm{e}^{3 x} \\mathrm{~d} x\n\\\\\\,\\\\\n\\text{Integrate by parts:} \\\\\n\\int \\mathrm{fg}^{\\prime}=\\mathrm{fg}-\\int \\mathrm{f}^{\\prime} \\mathrm{g}\\\\\n\\mathrm{f}=x, \\mathrm{g}^{\\prime}=\\mathrm{e}^{3 x} \\\\\n\\mathrm{f}^{\\prime}=1, \\mathrm{g}=\\frac{\\mathrm{e}^{3 x}}{3} \\\\\n=\\frac{x \\mathrm{e}^{3 x}}{3}-\\int \\frac{\\mathrm{e}^{3 x}}{3} \\mathrm{d} x\n\\\\\\,\\\\\n\\text{Now solving:}\n\\\\\n\\int \\frac{\\mathrm{e}^{3 x}}{3} \\mathrm{d} x \\\\\n\\text { Substitute } u=3 x \\longrightarrow \\frac{\\mathrm{d} u}{\\mathrm{d} x}=3 \\longrightarrow \\mathrm{d} x=\\frac{1}{3} \\mathrm{d} u: \\\\\n=\\frac{1}{9} \\int \\mathrm{e}^{u} \\mathrm{d} u\n\\\\\\,\\\\\n\\text{Now solving:}\n\\\\\n\\int \\mathrm{e}^{u} \\mathrm{d} u\n\\\\\\,\\\\\n\\text{Apply exponential rule:}\\\\\n\\int \\mathrm{a}^{u} \\mathrm{~d} u= \\frac{\\mathrm{a}^{u}}{\\ln (\\mathrm{a})} \\text { with } \\mathrm{a}=\\mathrm{e}: \\\\\n=\\mathrm{e}^{u}\\\\\\,\\\\\n\\text{Plug in solved integrals}:\n\\\\\n\\frac{1}{9} \\int \\mathrm{e}^{u} \\mathrm{~d} u \\\\\n=\\frac{\\mathrm{e}^{u}}{9}\\\\\n\\\\\n\\text{Undo substitution} u=3 x :\n\\\\\n=\\frac{\\mathrm{e}^{3 x}}{9}\n\\\\\n\\text{Plug in solved integrals}:\n\\\\\n\\frac{x \\mathrm{e}^{3 x}}{3}-\\int \\frac{\\mathrm{e}^{3 x}}{3} \\mathrm{~d} x \\\\\n=\\frac{x \\mathrm{e}^{3 x}}{3}-\\frac{\\mathrm{e}^{3 x}}{9}\n\\\\\n\\text{Plug in solved integrals}:\n\\\\\n\\frac{2}{3} \\int x \\mathrm{e}^{3 x} \\mathrm{~d} x \\\\\n=\\frac{2 x \\mathrm{e}^{3 x}}{9}-\\frac{2 \\mathrm{e}^{3 x}}{27}\n\\\\\n\\text{Plug in solved integrals}:\\\\\n\\frac{x^{2} \\mathrm{e}^{3 x}}{3}-\\int \\frac{2 x \\mathrm{e}^{3 x}}{3} \\mathrm{~d} x\\\\\n=\\frac{x^{2} \\mathrm{e}^{3 x}}{3}-\\frac{2 x \\mathrm{e}^{3 x}}{9}+\\frac{2 \\mathrm{e}^{3 x}}{27}\\\\\n\\text{Plug in solved integrals}:\\\\\n\\frac{x^{3} \\mathrm{e}^{3 x}}{3}-\\int x^{2} \\mathrm{e}^{3 x} \\mathrm{~d} x\\\\\n=\\frac{x^{3} \\mathrm{e}^{3 x}}{3}-\\frac{x^{2} \\mathrm{e}^{3 x}}{3}+\\frac{2 x \\mathrm{e}^{3 x}}{9}-\\frac{2 \\mathrm{e}^{3 x}}{27}\\\\\n\\text{Thus:}\\\\\n\\int x^{3} \\mathrm{e}^{3 x} \\mathrm{~d} x=\\\\\\frac{x^{3} \\mathrm{e}^{3 x}}{3}-\\frac{x^{2} \\mathrm{e}^{3 x}}{3}+\\frac{2 x \\mathrm{e}^{3 x}}{9}-\\frac{2 \\mathrm{e}^{3 x}}{27}+C\\\\\n=\\frac{\\left(9 x^{3}-9 x^{2}+6 x-2\\right) \\mathrm{e}^{3 x}}{27}+C"
4.
"\\int{\\sin{\\left(\\ln{\\left(x \\right)} \\right)} d x}"
"\\begin{array}{c}\n\\text { Substitute } u=\\ln (x) \\longrightarrow \\frac{\\mathrm{d} u}{\\mathrm{~d} x}=\\frac{1}{x}=\\mathrm{e}^{u} \\longrightarrow \\mathrm{d} x=x \\mathrm{~d} u, \\text { use: } \\\\\n=\\int \\mathrm{e}^{u} \\sin (u) \\mathrm{d} u\n\\end{array}\n\\\\\n\\text{ We will integrate by parts twice in a row: } \\\\\n\\int \\mathrm{fg}^{\\prime}=\\mathrm{fg}-\\int \\mathrm{f}^{\\prime} \\mathrm{g}\\\\\n\n\\text{ First time: }\n\\\\ \\mathbf{f}=\\sin (u), \\quad \\mathrm{g}^{\\prime}=\\mathrm{e}^{u} \\\\\n\\begin{array}{c}\\\\\n\\mathbf{f}^{\\prime}=\\cos (u), \\mathrm{g}=\\mathrm{e}^{u} \\\\\n=\\mathrm{e}^{u} \\sin (u)-\\int \\mathrm{e}^{u} \\cos (u) \\mathrm{d} u\n\\end{array}\n\\\\\n\n\\text{ Second time:} \n\\\\\n\\begin{array}{c}\\\\\n\\mathrm{f}=\\cos (u), \\quad \\mathrm{g}^{\\prime}=\\mathrm{e}^{u} \\\\\n\\mathrm{f}^{\\prime}=-\\sin (u), \\mathrm{g}=\\mathrm{e}^{u}: \\\\\n=\\mathrm{e}^{u} \\sin (u)-\\left(\\mathrm{e}^{u} \\cos (u)-\\int-\\mathrm{e}^{u} \\sin (u) \\mathrm{d} u\\right)\n\\end{array}\\\\\n\n\\text { Apply linearity: }\\\\\n=\\mathrm{e}^{u} \\sin (u)-\\left(\\mathrm{e}^{u} \\cos (u)+\\int \\mathrm{e}^{u} \\sin (u) \\mathrm{d} u\\right)\\\\\n\\text{ The integral } \\int \\mathrm{e}^{u} \\sin (u) \\mathrm{d} u\\\\\n \\text{ appears again on the right side of the equation, we can solve for it: }\\\\\n\n=\\frac{\\mathrm{e}^{u} \\sin (u)-\\mathrm{e}^{u} \\cos (u)}{2}\\\\\n\\text{ Undo substitution } u=\\ln (x), \\text { use: }\n\\\\\n\\begin{array}{c}\\mathrm{e}^{\\ln (x)}=x \\\\ =\\frac{x \\sin (\\ln (x))-x \\cos (\\ln (x))}{2}\\end{array}\n\\\\\n\\text{Thus }\\\\\n\\int \\sin (\\ln (x)) \\mathrm{d} x\n=\\frac{x \\sin (\\ln (x))-x \\cos (\\ln (x))}{2}+C\\\\\n\\int \\sin (\\ln (x)) \\mathrm{d} x=\\frac{x(\\sin (\\ln (x))-\\cos (\\ln (x)))}{2}+C\\\\" 5.
"\\int \\arcsin (x) \\mathrm{d} x\\\\\n\\text{ Integrate by parts: }\\\\\n\\int \\mathrm{fg}^{\\prime}=\\mathrm{fg}-\\int \\mathrm{f}^{\\prime} \\mathrm{g}\\\\\n\nf=\\arcsin (x), g^{\\prime}=1 \\\\\n{f^{\\prime}}=\\frac{1}{\\sqrt{1-x^{2}}}, g=x \\\\\n=x \\arcsin (x)-\\int \\frac{x}{\\sqrt{1-x^{2}}} \\mathrm{~d} x\\\\\n\n\\text{ Now solving: }\\\\\n\\int \\frac{x}{\\sqrt{1-x^{2}}} d x\\\\\n\\text { Substitute } u=1-x^{2} \\longrightarrow \\frac{\\mathrm{d} u}{\\mathrm{~d} x}=-2 x \\longrightarrow \\mathrm{d} x=-\\frac{1}{2 x} \\mathrm{~d} u \\text { : } \\\\ =-\\frac{1}{2} \\int \\frac{1}{\\sqrt{u}} \\mathrm{~d} u\\\\\n\n\\text{ Now solving: }\\\\\n\\int \\frac{1}{\\sqrt{u}} \\mathrm{~d} u\n\n\\text{ Apply power rule: }\\\\\n\n\\int u^{\\mathrm{n}} \\mathrm{d} u=\\frac{u^{\\mathrm{n}+1}}{\\mathrm{n}+1} \\text { with } \\mathrm{n}=-\\frac{1}{2}: \\\\\n=2 \\sqrt{u}\n\\\\\n\n\\text{ Plug in solved integrals: }\\\\\n-\\frac{1}{2} \\int \\frac{1}{\\sqrt{u}} \\mathrm{~d} u\\\\\n=-\\sqrt{u}\n\\\\\n\\text{ Undo substitution } \\boldsymbol{u}=\\mathbf{1}-\\boldsymbol{x}^{2}\\\\\n=-\\sqrt{1-x^{2}}\\\\\n\\text{ Plug in solved integrals :}\\\\\nx \\arcsin (x)-\\int \\frac{x}{\\sqrt{1-x^{2}}} \\mathrm{~d} x\\\\\n=x \\arcsin (x)+\\sqrt{1-x^{2}}\\\\\n\\text{ Thus: }\\\\\n\\int \\arcsin (x) \\mathrm{d} x\n=x \\arcsin (x)+\\sqrt{1-x^{2}}+C"
6.
"\\int y^{3} \\mathrm{e}^{y^{2}} \\mathrm{~d} y \\\\\n\\text { Substitute } u=y^{2} \\longrightarrow \\frac{\\mathrm{d} u}{\\mathrm{~d} y}=2 y \\longrightarrow \\mathrm{d} y=\\frac{1}{2 y} \\mathrm{~d} u \\text { : } \\\\= \\frac{1}{2} \\int u \\mathrm{e}^{u} \\mathrm{~d} u\\\\\n\n\\text{ Now solving: }\n\\int u \\mathrm{e}^{u} \\mathrm{~d} u\\\\\n\n\\text{ Integrate by parts: } \\\\\n\\int \\mathrm{fg}^{\\prime}=\\mathrm{fg}-\\int \\mathrm{f}^{\\prime} \\mathrm{g}\\\\\n\\begin{array}{l}\n\\mathrm{f}=u, \\quad \\mathrm{~g}^{\\prime}=\\mathrm{e}^{u} \\\\\n\\mathrm{f}^{\\prime}=1, \\mathrm{~g}=\\mathrm{e}^{u} \\\\\n=u \\mathrm{e}^{u}-\\int \\mathrm{e}^{u} \\mathrm{~d} u\n\\end{array}\\\\\n\\text{ Now solving: } \\int \\mathrm{e}^{u} \\mathrm{~d} u\\\\\n\n\\text{ Apply exponential rule: }\\\\\n \\int a^{u} \\mathrm{~d} u= \\frac{\\mathrm{a}^{u}}{\\ln (\\mathrm{a})} \\text { with } \\mathrm{a}=\\mathrm{e}: \\\\ =\\mathrm{e}^{u} \\\\\n\n\\text{ Plug in solved integrals: }\\\\\nu \\mathrm{e}^{u}-\\int \\mathrm{e}^{u} \\mathrm{~d} u \\\\\n=u \\mathrm{e}^{u}-\\mathrm{e}^{u}\\\\\n\n\\text{ Plug in solved integrals: }\\\\\n\\frac{1}{2} \\int u \\mathrm{e}^{u} \\mathrm{~d} u \\\\\n= \\frac{u \\mathrm{e}^{u}}{2}-\\frac{\\mathrm{e}^{u}}{2}\\\\\n\n\\text{ Undo substitution }\\boldsymbol{u}=\\boldsymbol{y}^{2} :\\\\\n=\\frac{y^{2} \\mathrm{e}^{y^{2}}}{2}-\\frac{\\mathrm{e}^{y^{2}}}{2}\\\\\n\n\\text{ Thus: }\\\\\n\\int y^{3} \\mathrm{e}^{y^{2}} \\mathrm{~d} y =\\frac{y^{2} \\mathrm{e}^{y^{2}}}{2}-\\frac{\\mathrm{e}^{y^{2}}}{2}+C\\\\\n\\int y^{3} \\mathrm{e}^{y^{2}} \\mathrm{~d} y=\\frac{\\left(y^{2}-1\\right) \\mathrm{e}^{y^{2}}}{2}+C"
Comments
Leave a comment