Question #182147

Evaluate the following integrals:

  1. ∫ 𝑡 𝑐𝑜𝑠2𝑡 𝑑𝑡
  2. ∫ 𝑥^3 𝑙𝑛𝑥 𝑑𝑥
  3. ∫ 𝑥^3 𝑒^3𝑥 𝑑𝑥
  4. ∫ 𝑠𝑖𝑛(𝑙𝑛𝑥) 𝑑𝑥
  5. ∫𝑠𝑖𝑛^−1 𝑥 𝑑𝑥
  6. ∫ 𝑦^3 𝑒^𝑦^2 𝑑𝑦
1
Expert's answer
2021-05-14T14:58:37-0400

1.

tcos(2t)dt\int t cos (2t) dt

Integrate by parts


fg=fgfgf=t,g=cos(2t)f=1,g=sin(2t)2{\int}\mathtt{f}\mathtt{g}' = \mathtt{f}\mathtt{g} - {\int}\mathtt{f}'\mathtt{g}\\ f=t, g'=\cos\left(2t\right)\\ f'=1\, , g=\dfrac{\sin\left(2t\right)}{2}\\

Now solving:


sin(2t)2dtSubstitute u=2tdudt=2dt=12du:=14sin(u)du=cos(u){\displaystyle\int}\dfrac{\sin\left(2t\right)}{2}\,\mathrm{d}t\\ \text{Substitute } u=2t \rightarrow \frac{du}{dt} =2 \rightarrow dt= \dfrac{1}{2}du:\\ = \frac{1}{4}\int \sin(u)du\\ =-cos(u)


Plugging in solved integrals:


14sin(u)du=cosu4 Recall that u=2tcos(2t)4\frac{1}{4}\int \sin(u)du\\ =-\frac{cos u}{4}\\ \text{ Recall that } u=2t\\ \therefore -\frac{cos (2t)}{4}\\

Plug in solved integrals,


tsin(2t)2sin(2t)2dt=tsin(2t)2+cos(2t)4\dfrac{t\sin\left(2t\right)}{2}-{\displaystyle\int}\dfrac{\sin\left(2t\right)}{2}\,\mathrm{d}t\\ =\dfrac{t\sin\left(2t\right)}{2}+\dfrac{\cos\left(2t\right)}{4}

Thus:


tcos(2t)dt=tsin(2t)2+cos(2t)4+C=tcos(t)sin(t)+cos2(t)2+C{\displaystyle\int}t\cos\left(2t\right)\,\mathrm{d}t =\dfrac{t\sin\left(2t\right)}{2}+\dfrac{\cos\left(2t\right)}{4}+C\\ =t\cos\left(t\right)\sin\left(t\right)+\dfrac{\cos^2\left(t\right)}{2}+C

2.

x3lnx  dx\int x^3 \ln x\; dx

Integrate by parts:fg=fgfgf=ln(x),g=x3f=steps x,g=steps 4=x4ln(x)4x34dxNow solving:x34dxApply linearity:=14x3dxNow solving:x3dxApply power rule:xndx=xn+1n+1 with n=3:=x44Plug in solved integrals:14x3dx=x416Plug in solved integrals:x4ln(x)4x34dx=x4ln(x)4x416Thusx3ln(x)dx=x4ln(x)4x416+C=x4(4ln(x)1)16+C\text{Integrate by parts:} \\\,\\ \int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime}{\mathrm{g}}\\ f=\ln (x), g^{\prime}=x^{3}\\ \quad f^{\prime}=\frac{\downarrow_{\text {steps }}}{x}, \quad g=\frac{\downarrow_{\text {steps }}}{4}\\ =\frac{x^{4} \ln (x)}{4}-\int \frac{x^{3}}{4} d x\\ \text{Now solving:}\\\,\\ \int \frac{x^{3}}{4} d x\\ \text{Apply linearity:}\\\,\\ =\frac{1}{4} \int x^{3} d x\\ \text{Now solving:}\\ \int x^{3} d x\\ \text{Apply power rule:}\\ \begin{aligned} \int x^{n} d x=& \frac{x^{n+1}}{n+1} \text { with } n=3: \\ &=\frac{x^{4}}{4} \end{aligned}\\\,\\ \text{Plug in solved integrals:}\\ \frac{1}{4} \int x^{3} d x\\ =\frac{x^{4}}{16}\\\,\\ \text{Plug in solved integrals:}\\ \frac{x^{4} \ln (x)}{4}-\int \frac{x^{3}}{4} d x\\ =\frac{x^{4} \ln (x)}{4}-\frac{x^{4}}{16}\\\,\\ \text{Thus}\\ \int x^{3} \ln (x) d x=\frac{x^{4} \ln (x)}{4}-\frac{x^{4}}{16}+C\\ =\frac{x^{4}(4 \ln (x)-1)}{16}+C


3.


x3e3xdx{\displaystyle\int}x^3\mathrm{e}^{3x}\,\mathrm{d}x

Using integration by parts


x3e3xdxIntegrate by parts:fg=fgfgf=x3,g=e3xf=3x2, g=e3x3=x3e3x3x2e3xdxNow solving:x2e3xdxIntegratebyparts:fg=fgfgf=x2, g=e3xf=2x, g=e3x3=x2e3x32xe3x3dxNow solving:2xe3x3dxApply linearity:=23xe3x dxNow solving:xe3x dxIntegrate by parts:fg=fgfgf=x,g=e3xf=1,g=e3x3=xe3x3e3x3dxNow solving:e3x3dx Substitute u=3xdudx=3dx=13du:=19euduNow solving:euduApply exponential rule:au du=auln(a) with a=e:=euPlug in solved integrals:19eu du=eu9Undo substitutionu=3x:=e3x9Plug in solved integrals:xe3x3e3x3 dx=xe3x3e3x9Plug in solved integrals:23xe3x dx=2xe3x92e3x27Plug in solved integrals:x2e3x32xe3x3 dx=x2e3x32xe3x9+2e3x27Plug in solved integrals:x3e3x3x2e3x dx=x3e3x3x2e3x3+2xe3x92e3x27Thus:x3e3x dx=x3e3x3x2e3x3+2xe3x92e3x27+C=(9x39x2+6x2)e3x27+C\int x^{3} \mathrm{e}^{3 x} \mathrm{d} x\\\,\\ \text{Integrate by parts:} \\ \int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime} \mathrm{g}\\ \mathrm{f}=x^{3}, \mathrm{g}^{\prime}=\mathrm{e}^{3 x} \\ \mathrm{f}^{\prime}=3 x^{2}, \mathrm{~g}=\frac{\mathrm{e}^{3 x}}{3} \\ =\frac{x^{3} \mathrm{e}^{3 x}}{3}-\int x^{2} \mathrm{e}^{3 x} \mathrm{d} x\\ \,\\ \text{Now solving:}\\ \int x^{2} \mathrm{e}^{3 x} \mathrm{d} x\\\,\\ Integrate by parts: \\ \int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime} \mathrm{g}\\ \mathrm{f}=x^{2}, \mathrm{~g}^{\prime}=\mathrm{e}^{3 x} \\ \mathrm{f}^{\prime}=2 x, \mathrm{~g}=\frac{\mathrm{e}^{3 x}}{3} \\ =\frac{x^{2} \mathrm{e}^{3 x}}{3}-\int \frac{2 x \mathrm{e}^{3 x}}{3} \mathrm{d} x\\ \,\\ \text{Now solving:} \\ \int \frac{2 x \mathrm{e}^{3 x}}{3} \mathrm{d} x \\\,\\ \text{Apply linearity:} =\frac{2}{3} \int x \mathrm{e}^{3 x} \mathrm{~d} x\\ \text{Now solving:}\\ \int x \mathrm{e}^{3 x} \mathrm{~d} x \\\,\\ \text{Integrate by parts:} \\ \int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime} \mathrm{g}\\ \mathrm{f}=x, \mathrm{g}^{\prime}=\mathrm{e}^{3 x} \\ \mathrm{f}^{\prime}=1, \mathrm{g}=\frac{\mathrm{e}^{3 x}}{3} \\ =\frac{x \mathrm{e}^{3 x}}{3}-\int \frac{\mathrm{e}^{3 x}}{3} \mathrm{d} x \\\,\\ \text{Now solving:} \\ \int \frac{\mathrm{e}^{3 x}}{3} \mathrm{d} x \\ \text { Substitute } u=3 x \longrightarrow \frac{\mathrm{d} u}{\mathrm{d} x}=3 \longrightarrow \mathrm{d} x=\frac{1}{3} \mathrm{d} u: \\ =\frac{1}{9} \int \mathrm{e}^{u} \mathrm{d} u \\\,\\ \text{Now solving:} \\ \int \mathrm{e}^{u} \mathrm{d} u \\\,\\ \text{Apply exponential rule:}\\ \int \mathrm{a}^{u} \mathrm{~d} u= \frac{\mathrm{a}^{u}}{\ln (\mathrm{a})} \text { with } \mathrm{a}=\mathrm{e}: \\ =\mathrm{e}^{u}\\\,\\ \text{Plug in solved integrals}: \\ \frac{1}{9} \int \mathrm{e}^{u} \mathrm{~d} u \\ =\frac{\mathrm{e}^{u}}{9}\\ \\ \text{Undo substitution} u=3 x : \\ =\frac{\mathrm{e}^{3 x}}{9} \\ \text{Plug in solved integrals}: \\ \frac{x \mathrm{e}^{3 x}}{3}-\int \frac{\mathrm{e}^{3 x}}{3} \mathrm{~d} x \\ =\frac{x \mathrm{e}^{3 x}}{3}-\frac{\mathrm{e}^{3 x}}{9} \\ \text{Plug in solved integrals}: \\ \frac{2}{3} \int x \mathrm{e}^{3 x} \mathrm{~d} x \\ =\frac{2 x \mathrm{e}^{3 x}}{9}-\frac{2 \mathrm{e}^{3 x}}{27} \\ \text{Plug in solved integrals}:\\ \frac{x^{2} \mathrm{e}^{3 x}}{3}-\int \frac{2 x \mathrm{e}^{3 x}}{3} \mathrm{~d} x\\ =\frac{x^{2} \mathrm{e}^{3 x}}{3}-\frac{2 x \mathrm{e}^{3 x}}{9}+\frac{2 \mathrm{e}^{3 x}}{27}\\ \text{Plug in solved integrals}:\\ \frac{x^{3} \mathrm{e}^{3 x}}{3}-\int x^{2} \mathrm{e}^{3 x} \mathrm{~d} x\\ =\frac{x^{3} \mathrm{e}^{3 x}}{3}-\frac{x^{2} \mathrm{e}^{3 x}}{3}+\frac{2 x \mathrm{e}^{3 x}}{9}-\frac{2 \mathrm{e}^{3 x}}{27}\\ \text{Thus:}\\ \int x^{3} \mathrm{e}^{3 x} \mathrm{~d} x=\\\frac{x^{3} \mathrm{e}^{3 x}}{3}-\frac{x^{2} \mathrm{e}^{3 x}}{3}+\frac{2 x \mathrm{e}^{3 x}}{9}-\frac{2 \mathrm{e}^{3 x}}{27}+C\\ =\frac{\left(9 x^{3}-9 x^{2}+6 x-2\right) \mathrm{e}^{3 x}}{27}+C

4.


sin(ln(x))dx\int{\sin{\left(\ln{\left(x \right)} \right)} d x}

 Substitute u=ln(x)du dx=1x=eudx=x du, use: =eusin(u)du We will integrate by parts twice in a row: fg=fgfg First time: f=sin(u),g=euf=cos(u),g=eu=eusin(u)eucos(u)du Second time:f=cos(u),g=euf=sin(u),g=eu:=eusin(u)(eucos(u)eusin(u)du) Apply linearity: =eusin(u)(eucos(u)+eusin(u)du) The integral eusin(u)du appears again on the right side of the equation, we can solve for it: =eusin(u)eucos(u)2 Undo substitution u=ln(x), use: eln(x)=x=xsin(ln(x))xcos(ln(x))2Thus sin(ln(x))dx=xsin(ln(x))xcos(ln(x))2+Csin(ln(x))dx=x(sin(ln(x))cos(ln(x)))2+C\begin{array}{c} \text { Substitute } u=\ln (x) \longrightarrow \frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{x}=\mathrm{e}^{u} \longrightarrow \mathrm{d} x=x \mathrm{~d} u, \text { use: } \\ =\int \mathrm{e}^{u} \sin (u) \mathrm{d} u \end{array} \\ \text{ We will integrate by parts twice in a row: } \\ \int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime} \mathrm{g}\\ \text{ First time: } \\ \mathbf{f}=\sin (u), \quad \mathrm{g}^{\prime}=\mathrm{e}^{u} \\ \begin{array}{c}\\ \mathbf{f}^{\prime}=\cos (u), \mathrm{g}=\mathrm{e}^{u} \\ =\mathrm{e}^{u} \sin (u)-\int \mathrm{e}^{u} \cos (u) \mathrm{d} u \end{array} \\ \text{ Second time:} \\ \begin{array}{c}\\ \mathrm{f}=\cos (u), \quad \mathrm{g}^{\prime}=\mathrm{e}^{u} \\ \mathrm{f}^{\prime}=-\sin (u), \mathrm{g}=\mathrm{e}^{u}: \\ =\mathrm{e}^{u} \sin (u)-\left(\mathrm{e}^{u} \cos (u)-\int-\mathrm{e}^{u} \sin (u) \mathrm{d} u\right) \end{array}\\ \text { Apply linearity: }\\ =\mathrm{e}^{u} \sin (u)-\left(\mathrm{e}^{u} \cos (u)+\int \mathrm{e}^{u} \sin (u) \mathrm{d} u\right)\\ \text{ The integral } \int \mathrm{e}^{u} \sin (u) \mathrm{d} u\\ \text{ appears again on the right side of the equation, we can solve for it: }\\ =\frac{\mathrm{e}^{u} \sin (u)-\mathrm{e}^{u} \cos (u)}{2}\\ \text{ Undo substitution } u=\ln (x), \text { use: } \\ \begin{array}{c}\mathrm{e}^{\ln (x)}=x \\ =\frac{x \sin (\ln (x))-x \cos (\ln (x))}{2}\end{array} \\ \text{Thus }\\ \int \sin (\ln (x)) \mathrm{d} x =\frac{x \sin (\ln (x))-x \cos (\ln (x))}{2}+C\\ \int \sin (\ln (x)) \mathrm{d} x=\frac{x(\sin (\ln (x))-\cos (\ln (x)))}{2}+C\\

5.


arcsin(x)dx Integrate by parts: fg=fgfgf=arcsin(x),g=1f=11x2,g=x=xarcsin(x)x1x2 dx Now solving: x1x2dx Substitute u=1x2du dx=2xdx=12x du : =121u du Now solving: 1u du Apply power rule: undu=un+1n+1 with n=12:=2u Plug in solved integrals: 121u du=u Undo substitution u=1x2=1x2 Plug in solved integrals :xarcsin(x)x1x2 dx=xarcsin(x)+1x2 Thus: arcsin(x)dx=xarcsin(x)+1x2+C\int \arcsin (x) \mathrm{d} x\\ \text{ Integrate by parts: }\\ \int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime} \mathrm{g}\\ f=\arcsin (x), g^{\prime}=1 \\ {f^{\prime}}=\frac{1}{\sqrt{1-x^{2}}}, g=x \\ =x \arcsin (x)-\int \frac{x}{\sqrt{1-x^{2}}} \mathrm{~d} x\\ \text{ Now solving: }\\ \int \frac{x}{\sqrt{1-x^{2}}} d x\\ \text { Substitute } u=1-x^{2} \longrightarrow \frac{\mathrm{d} u}{\mathrm{~d} x}=-2 x \longrightarrow \mathrm{d} x=-\frac{1}{2 x} \mathrm{~d} u \text { : } \\ =-\frac{1}{2} \int \frac{1}{\sqrt{u}} \mathrm{~d} u\\ \text{ Now solving: }\\ \int \frac{1}{\sqrt{u}} \mathrm{~d} u \text{ Apply power rule: }\\ \int u^{\mathrm{n}} \mathrm{d} u=\frac{u^{\mathrm{n}+1}}{\mathrm{n}+1} \text { with } \mathrm{n}=-\frac{1}{2}: \\ =2 \sqrt{u} \\ \text{ Plug in solved integrals: }\\ -\frac{1}{2} \int \frac{1}{\sqrt{u}} \mathrm{~d} u\\ =-\sqrt{u} \\ \text{ Undo substitution } \boldsymbol{u}=\mathbf{1}-\boldsymbol{x}^{2}\\ =-\sqrt{1-x^{2}}\\ \text{ Plug in solved integrals :}\\ x \arcsin (x)-\int \frac{x}{\sqrt{1-x^{2}}} \mathrm{~d} x\\ =x \arcsin (x)+\sqrt{1-x^{2}}\\ \text{ Thus: }\\ \int \arcsin (x) \mathrm{d} x =x \arcsin (x)+\sqrt{1-x^{2}}+C

6.


y3ey2 dy Substitute u=y2du dy=2ydy=12y du : =12ueu du Now solving: ueu du Integrate by parts: fg=fgfgf=u, g=euf=1, g=eu=ueueu du Now solving: eu du Apply exponential rule: au du=auln(a) with a=e:=eu Plug in solved integrals: ueueu du=ueueu Plug in solved integrals: 12ueu du=ueu2eu2 Undo substitution u=y2:=y2ey22ey22 Thus: y3ey2 dy=y2ey22ey22+Cy3ey2 dy=(y21)ey22+C\int y^{3} \mathrm{e}^{y^{2}} \mathrm{~d} y \\ \text { Substitute } u=y^{2} \longrightarrow \frac{\mathrm{d} u}{\mathrm{~d} y}=2 y \longrightarrow \mathrm{d} y=\frac{1}{2 y} \mathrm{~d} u \text { : } \\= \frac{1}{2} \int u \mathrm{e}^{u} \mathrm{~d} u\\ \text{ Now solving: } \int u \mathrm{e}^{u} \mathrm{~d} u\\ \text{ Integrate by parts: } \\ \int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime} \mathrm{g}\\ \begin{array}{l} \mathrm{f}=u, \quad \mathrm{~g}^{\prime}=\mathrm{e}^{u} \\ \mathrm{f}^{\prime}=1, \mathrm{~g}=\mathrm{e}^{u} \\ =u \mathrm{e}^{u}-\int \mathrm{e}^{u} \mathrm{~d} u \end{array}\\ \text{ Now solving: } \int \mathrm{e}^{u} \mathrm{~d} u\\ \text{ Apply exponential rule: }\\ \int a^{u} \mathrm{~d} u= \frac{\mathrm{a}^{u}}{\ln (\mathrm{a})} \text { with } \mathrm{a}=\mathrm{e}: \\ =\mathrm{e}^{u} \\ \text{ Plug in solved integrals: }\\ u \mathrm{e}^{u}-\int \mathrm{e}^{u} \mathrm{~d} u \\ =u \mathrm{e}^{u}-\mathrm{e}^{u}\\ \text{ Plug in solved integrals: }\\ \frac{1}{2} \int u \mathrm{e}^{u} \mathrm{~d} u \\ = \frac{u \mathrm{e}^{u}}{2}-\frac{\mathrm{e}^{u}}{2}\\ \text{ Undo substitution }\boldsymbol{u}=\boldsymbol{y}^{2} :\\ =\frac{y^{2} \mathrm{e}^{y^{2}}}{2}-\frac{\mathrm{e}^{y^{2}}}{2}\\ \text{ Thus: }\\ \int y^{3} \mathrm{e}^{y^{2}} \mathrm{~d} y =\frac{y^{2} \mathrm{e}^{y^{2}}}{2}-\frac{\mathrm{e}^{y^{2}}}{2}+C\\ \int y^{3} \mathrm{e}^{y^{2}} \mathrm{~d} y=\frac{\left(y^{2}-1\right) \mathrm{e}^{y^{2}}}{2}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS