The line segment from (3,0,1)to(−1,2,0) is,
r(t)=⟨3,0,1⟩+t⟨−4,2,−1⟩
=⟨3,0,1⟩+⟨−4t,2t,−t⟩
=⟨3−4t,2t,1−t⟩
where, 0<t<1
The line integral is evaluated as,
∫CF(x,y,z)ds
=∫CF(r(t))⋅r′(t)dt
=∫01⟨(3−4t)(1−t),0,−2t(1−t)⟩⋅⟨−4,2,−1⟩dt
=∫01(−4(3−7t+4t2)+2t(1−t))dt
=∫01(−12+28t−16t2+2t−2t2)dt
=∫01(−12+30t−18t2)dt
=[−12(t)+30(2t2)−18(3t3))]01
=−12+15−6
=−3
Comments