Evaluate where
F(x,y,z)=xzi−yzk
and c is the line segment from (3,0,1) to (-1,2,0)
The line segment from "(3,0,1) to (-1,2,0)" is,
"r(t)=\\langle 3,0,1\\rangle+t\\langle -4,2,-1\\rangle"
"=\\langle 3,0,1\\rangle+\\langle -4t,2t,-t\\rangle"
"=\\langle 3-4t,2t,1-t\\rangle"
where, "0<t<1"
The line integral is evaluated as,
"\\int_{C}F(x,y,z)ds"
"=\\int_{C}F(r(t))\\cdot r'(t)dt"
"=\\int_{0}^{1}\\langle (3-4t)(1-t),0,-2t(1-t) \\rangle\\cdot \\langle -4,2,-1 \\rangle dt"
"=\\int_{0}^{1}(-4(3-7t+4t^2)+2t(1-t)) dt"
"=\\int_{0}^{1}(-12+28t-16t^2+2t-2t^2) dt"
"=\\int_{0}^{1}(-12+30t-18t^2) dt"
"=\\lbrack -12(t)+30(\\frac{t^2}{2})-18(\\frac{t^3}{3})) \\rbrack_{0}^{1}"
"=-12+15-6"
"=-3"
Comments
Leave a comment