Question #183546

Evaluate   where   

F(x,y,z)=xzi−yzk


  and c is the line segment  from (3,0,1) to (-1,2,0)


1
Expert's answer
2021-05-07T09:06:02-0400

The line segment from (3,0,1)to(1,2,0)(3,0,1) to (-1,2,0) is,


r(t)=3,0,1+t4,2,1r(t)=\langle 3,0,1\rangle+t\langle -4,2,-1\rangle


=3,0,1+4t,2t,t=\langle 3,0,1\rangle+\langle -4t,2t,-t\rangle


=34t,2t,1t=\langle 3-4t,2t,1-t\rangle


where, 0<t<10<t<1


The line integral is evaluated as,


CF(x,y,z)ds\int_{C}F(x,y,z)ds


=CF(r(t))r(t)dt=\int_{C}F(r(t))\cdot r'(t)dt


=01(34t)(1t),0,2t(1t)4,2,1dt=\int_{0}^{1}\langle (3-4t)(1-t),0,-2t(1-t) \rangle\cdot \langle -4,2,-1 \rangle dt


=01(4(37t+4t2)+2t(1t))dt=\int_{0}^{1}(-4(3-7t+4t^2)+2t(1-t)) dt


=01(12+28t16t2+2t2t2)dt=\int_{0}^{1}(-12+28t-16t^2+2t-2t^2) dt


=01(12+30t18t2)dt=\int_{0}^{1}(-12+30t-18t^2) dt


=[12(t)+30(t22)18(t33))]01=\lbrack -12(t)+30(\frac{t^2}{2})-18(\frac{t^3}{3})) \rbrack_{0}^{1}


=12+156=-12+15-6


=3=-3


Therefore, the line integral is CF(x,y,z)ds=3\int_{C}F(x,y,z)ds=-3

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS