Evaluate LaTeX: \int_cF.dr\:\: where LaTeX: F\left(x,y,z\right)=xzi-yzkF(x,y,z)=xzi−yzk and c is the line segment from (3,0,1) to (-1,2,0)
Given, "F(x,y,z)=xz\\bold{i}-yz\\bold{k}" and line segment c from (3,0,1) to (-1,2,0).
Then,
"r(t)=(1-t)<3,0,1>+t<-1,2,0>=<3-4t,2t,1-t>\\newline\n\\text{Differentiate with respect to t,}\n\\frac{dr}{dt}=<-4,2,-1>\\newline\ndr=(-4i+2j-k)dt\\newline\n\\text{Now, }F(r(t))=(3-4t)(1-t)i-2t(1-t)k\\newline\n\\hspace{2.1cm}=(3t^2-7t+3)i+(2t^2-2t)k\\newline\n\\text{Therefore,}\\newline\n\\intop F.dr=[(3t^2-7t+3)i+(2t^2-2t)k].[\u22124i+2j\u2212k]dt\\newline\n\\hspace{1.1cm}=\\int^1_{0}-4(3t^2-7t+3)-(2t^2-2t)dt\\newline\n\\hspace{1.1cm}=\\int^1_{0}-14t^2+30t-12dt\\newline\n\\hspace{1.1cm}=[-\\frac{14}{3}t^3+15t^2-12t]^1_{0}\\newline\n\\hspace{1.1cm}=\\frac{-5}{3}"
Thus,the requrired answer is 5/3.
Comments
Leave a comment