Question #183878

If (𝜑)𝑥, 𝑦, 𝑧) = 𝑥𝑦 2 𝑧 and 𝐴 = 𝑥𝑧𝑖 + 𝑥𝑦 2 𝑗 + 𝑦𝑧 2𝑘, find 𝜕 3 𝜕2𝑥𝜕𝑧 𝜑𝐴 at point 2, −1,1 .


1
Expert's answer
2021-04-26T03:24:15-0400

φ=(xy)2zφx=2xy2z2φx2=2y2z3φx2z=2y2Aty=1,3φx2z=2A=xzi^+xy2j^+yz2k^Atx=2,y=1,z=13φx2zA=2((2)(1)i^+2(1)2j^+(1)(1)2k^)=2(2i^+2j^k^)=2(2,2,1)\displaystyle \varphi = (xy)^2z \\ \frac{\partial \varphi}{\partial x} = 2xy^2z\\ \frac{\partial^2\varphi}{\partial x^2} = 2y^2 z\\ \frac{\partial^3\varphi}{\partial x^2 \partial z} = 2y^2 \\ \textsf{At}\,\, y = -1, \\ \frac{\partial^3\varphi}{\partial x^2 \partial z} = 2\\ A= xz\hat{\textbf{i}} + xy^2\hat{\textbf{j}} + yz^2\hat{\textbf{k}} \\ \textsf{At}\,\,x=2, y = -1, z=1 \\ \begin{aligned} \frac{\partial^3\varphi}{\partial x^2 \partial z} \cdot A &= 2\left((2)(1)\hat{\textbf{i}} + 2(-1)^2\hat{\textbf{j}} + (-1)(1)^2\hat{\textbf{k}}\right) \\ &= 2\left(2\hat{\textbf{i}} + 2\hat{\textbf{j}} - \hat{\textbf{k}}\right) = 2(2,2 , -1) \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS