If (𝜑)𝑥, 𝑦, 𝑧) = 𝑥𝑦 2 𝑧 and 𝐴 = 𝑥𝑧𝑖 + 𝑥𝑦 2 𝑗 + 𝑦𝑧 2𝑘, find 𝜕 3 𝜕2𝑥𝜕𝑧 𝜑𝐴 at point 2, −1,1 .
"\\displaystyle\n\\varphi = (xy)^2z \\\\\n\n\\frac{\\partial \\varphi}{\\partial x} = 2xy^2z\\\\\n\n\\frac{\\partial^2\\varphi}{\\partial x^2} = 2y^2 z\\\\\n\n\\frac{\\partial^3\\varphi}{\\partial x^2 \\partial z} = 2y^2 \\\\\n\n\\textsf{At}\\,\\, y = -1, \\\\\n\n\\frac{\\partial^3\\varphi}{\\partial x^2 \\partial z} = 2\\\\\n\n A= xz\\hat{\\textbf{i}} + xy^2\\hat{\\textbf{j}} + yz^2\\hat{\\textbf{k}} \\\\\n\n\\textsf{At}\\,\\,x=2, y = -1, z=1 \\\\\n\\begin{aligned}\n\\frac{\\partial^3\\varphi}{\\partial x^2 \\partial z} \\cdot A &= 2\\left((2)(1)\\hat{\\textbf{i}} + 2(-1)^2\\hat{\\textbf{j}} + (-1)(1)^2\\hat{\\textbf{k}}\\right) \\\\\n&= 2\\left(2\\hat{\\textbf{i}} + 2\\hat{\\textbf{j}} - \\hat{\\textbf{k}}\\right) = 2(2,2 , -1)\n\\end{aligned}"
Comments
Leave a comment