5. (Sections 6.1, 6.3) Consider the R − R 2 function r defined by r (t) = t, t2 ; t ∈ [−3, 3] . (a) Determine the vector derivative r 0 (1) by using Definition 6.1.1(b) Sketch the curve r together with the vector r 0 (1), in order to illustrate the geometric meaning of the vector derivative. Note: The curve r is the image of r, so it consists of all points (x, y) = (t, t2 ); t ∈ [−3, 3]
a)
b)
This is tangent line at x=1, y=1 with slope m=2
Comments