1)∫x2x2−1dx=Isubstitutex=sint1dx=−sin2tcostdtI=∫sint1sin2t1−1sin2t−costdt==∫sin2t1−sin2t(−cost)dt==−∫sintcos2tdt==−∫sint1−sin2tdt==∫(sint−sint1)dt==−cost−ln∣tan2t∣+c==−cos(arcsinx1)−ln∣tan21arcsinx1∣+c2)∫6x+x2dx=Isubstitute6x+x2=t+xx=6−2tt2dx=(6−2t)212t−2t2dtx+t=6−2t−t2+6tthenI=∫6−2t−t2+6t(6−2t)212t−2t2dt===∫6−2t2dt=−ln∣6−2t∣+c==−ln∣6−2(6x+x2−x)∣+c3)∫xx4−4dx=Isubstitutex2=tt=sinz2dt=−sin2zcoszdzI=∫x2x4−4xdx==21∫x2x4−4dx2==21∫tt2−4dt==21∫sinz2sin2z4−4−sin2zcoszdzdz==−41∫sinz2coszsinzcoszdz==−81∫dz=−81z+c=−81arcsinx22+c4)∫9−4x2x2dx=Isubstitutex=23sintdx=23costdtI=∫9−4⋅49sin2t49sin2t⋅23costdt==∫3cost827sin2tcostdt==89∫sin2tdt==169∫(1−cos2t)dt==169(t−21sin2t)+c==169(arcsin32x−21sin(2arcsin32x))+c
Comments