Question #184744

Evaluate the the Integration by Trigonomentric Substitution:


1. ∫ √x² -1 dx/x²

2. ∫ dx/√6x+x²

3. ∫ dx/x√x⁴ -4

4. ∫ x² dx/√9-4x²


1
Expert's answer
2021-05-07T08:56:02-0400

1)x21x2dx=Isubstitutex=1sintdx=costdtsin2tI=1sin2t11sintcostdtsin2t==1sin2tsin2t(cost)dt==cos2tsintdt==1sin2tsintdt==(sint1sint)dt==costlntant2+c==cos(arcsin1x)lntan12arcsin1x+c2)dx6x+x2=Isubstitute6x+x2=t+xx=t262tdx=12t2t2(62t)2dtx+t=t2+6t62tthenI=12t2t2(62t)2dtt2+6t62t===2dt62t=ln62t+c==ln62(6x+x2x)+c3)dxxx44=Isubstitutex2=tt=2sinzdt=coszdzsin2zI=xdxx2x44==12dx2x2x44==12dttt24==12coszdzsin2zdz2sinz4sin2z4==14coszsinzdz2coszsinz==18dz=18z+c=18arcsin2x2+c4)x2dx94x2=Isubstitutex=32sintdx=32costdtI=94sin2t32costdt9494sin2t==278sin2tcostdt3cost==98sin2tdt==916(1cos2t)dt==916(t12sin2t)+c==916(arcsin2x312sin(2arcsin2x3))+c1) \int \frac{\sqrt {x^2-1}}{x^2}dx=I\\ substitute\\ x=\frac{1}{\sin t}\\ dx=-\frac{\cos t dt}{\sin^2t}\\ I=\int\frac{\sqrt{\frac{1}{\sin^2 t}-1}}{\frac{1}{\sin t}} \frac{-\cos t dt}{\sin^2t}=\\ =\int\sqrt{\frac{1-\sin^2t}{\sin^2t}}(-\cos t)dt=\\ =-\int\frac{\cos^2t}{\sin t }dt=\\ =-\int\frac{1-\sin^2t}{\sin t}dt=\\ =\int(\sin t- \frac{1}{\sin t}) dt=\\ =-\cos t -\ln|\tan\frac{t}{2}| + c=\\ =- \cos(\arcsin \frac{1}{x}) - \ln|\tan \frac{1}{2}\arcsin \frac{1}{x}| +c\\ 2) \int\frac{dx}{\sqrt{6x+x^2}}=I\\ substitute\\ \sqrt{6x+x^2}=t+x\\ x=\frac{t^2}{6-2t}\\ dx=\frac{12t-2t^2}{(6-2t)^2}dt\\ x+t=\frac{-t^2+6t}{6-2t}\\ then\\ I=\int\frac{\frac{12t-2t^2}{(6-2t)^2}dt}{\frac{-t^2+6t}{6-2t}}==\\ =\int \frac{2 dt}{6-2t}=-\ln|6-2t|+c=\\ =-\ln|6-2(\sqrt{6x+x^2}-x)|+c\\ 3) \int\frac{dx}{x\sqrt{x^4-4}}=I\\ substitute\\ x^2=t\\ t=\frac{2}{\sin z}\\ dt=-\frac{\cos z dz}{\sin^2z}\\ I=\int\frac{xdx}{x^2 \sqrt{x^4-4}}=\\ =\frac{1}{2}\int\frac{dx^2}{x^2\sqrt{x^4-4}}=\\ =\frac{1}{2}\int\frac{dt}{t\sqrt{t^2-4}}=\\ =\frac{1}{2}\int\frac{-\frac{\cos z dz}{\sin^2z}dz}{\frac{2}{\sin z}\sqrt{\frac{4}{\sin^2z}-4}}=\\ =-\frac{1}{4}\int\frac{\frac{\cos z}{\sin z}dz}{\frac{2\cos z}{\sin z}}=\\ =-\frac{1}{8}\int dz=-\frac{1}{8}z+c=-\frac{1}{8}\arcsin \frac{2}{x^2}+c\\ 4) \int\frac{x^2dx}{\sqrt{9-4x^2}}=I\\ substitute\\ x=\frac{3}{2}\sin t\\ dx=\frac{3}{2}\cos t dt\\ I=\int\frac{\frac{9}{4}\sin^2t \cdot\frac{3}{2}\cos t dt}{\sqrt{9-4 \cdot \frac{9}{4} \sin^2t }}=\\ =\int\frac{\frac{27}{8}\sin^2t \cos t dt}{3 \cos t}=\\ =\frac{9}{8}\int\sin^2t dt=\\ =\frac{9}{16}\int(1-\cos 2t) dt=\\ =\frac{9}{16}(t-\frac{1}{2} \sin2t) + c=\\ =\frac{9}{16}(\arcsin\frac{2x}{3}-\frac{1}{2} \sin(2\arcsin\frac{2x}{3})) + c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS