Given, the integral ∫ − 2 0 ∫ − 4 − y 2 4 − y 2 x 2 d x d y \int_{-2} ^{0} \int_{-\sqrt{4-y^2}} ^{\sqrt{4-y^2}} x^2 dxdy ∫ − 2 0 ∫ − 4 − y 2 4 − y 2 x 2 d x d y .
From the integral limit, the curves are
y = 0 y=0 y = 0 , ..........................................1
y = − 2 y=-2 y = − 2 , ....................................2
x 2 + y 2 = 4 x^2+y^2=4 x 2 + y 2 = 4 . ..............................3
Convert cartesian to polar coordinate,
x = r c o s θ , x=rcos\theta, x = rcos θ , ................................4
y = r s i n θ , y=rsin\theta, y = rs in θ , .................................5
r = x 2 + y 2 r=\sqrt{x^2+y^2} r = x 2 + y 2 , ........................6
θ = t a n − 1 y x \theta=tan^{-1}\frac{y}{x} θ = t a n − 1 x y ..............................7
From equation 3 and 6,
r = 2 r=2 r = 2
Therefore, 0 ≤ r ≤ 2 a n d 0 ≤ θ ≤ 2 π 0\le r \le 2 \ \space and \space 0\le\theta\le2\pi 0 ≤ r ≤ 2 an d 0 ≤ θ ≤ 2 π .
Then, the integral
∫ − 2 0 ∫ − 4 − y 2 4 − y 2 x 2 d x d y = ∫ 0 2 π ∫ 0 2 r 2 c o s 2 θ ( r d r d θ ) = ∫ 0 2 π ∫ 0 2 r 3 c o s 2 θ d r d θ = ∫ 0 2 π [ r 4 4 ] 0 2 c o s 2 θ d r d θ = ∫ 0 2 π 1. c o s 2 θ d θ = ∫ 0 2 π 1 + c o s 2 θ 2 d θ = 1 2 [ θ + s i n 2 θ 2 ] 0 2 π = π \int_{-2} ^{0} \int_{-\sqrt{4-y^2}} ^{\sqrt{4-y^2}} x^2 dxdy \newline =\int_{0} ^{2\pi} \int_{0} ^{2} r^2cos^2\theta(rdr d\theta)\newline=\int_{0} ^{2\pi} \int_{0} ^{2} r^3cos^2\theta dr d\theta\newline
=\int_{0} ^{2\pi} [\frac{r^4}{4}]_{0}^{2}\space cos^2\theta dr d\theta\newline
=\int_{0} ^{2\pi} 1. cos^2\theta d\theta\newline
=\int_{0} ^{2\pi} \frac{1+cos2\theta}{2} d\theta\newline
=\frac{1}{2}[\theta+\frac{sin2\theta}{2}]_{0}^{2\pi}\newline
=\pi ∫ − 2 0 ∫ − 4 − y 2 4 − y 2 x 2 d x d y = ∫ 0 2 π ∫ 0 2 r 2 co s 2 θ ( r d r d θ ) = ∫ 0 2 π ∫ 0 2 r 3 co s 2 θ d r d θ = ∫ 0 2 π [ 4 r 4 ] 0 2 co s 2 θ d r d θ = ∫ 0 2 π 1. co s 2 θ d θ = ∫ 0 2 π 2 1 + cos 2 θ d θ = 2 1 [ θ + 2 s in 2 θ ] 0 2 π = π
Thus, the value of the given integral is π \pi π .
Comments