Evaluate the following integral by first converting to an integral in polar coordinates.
X^2dxdy...where x varies from -2 to 0 and y varies from -√(4-y^2) to √(4-y^2)
Given, the integral "\\int_{-2} ^{0} \\int_{-\\sqrt{4-y^2}} ^{\\sqrt{4-y^2}} x^2 dxdy" .
From the integral limit, the curves are
"y=0" , ..........................................1
"y=-2", ....................................2
"x^2+y^2=4" . ..............................3
Convert cartesian to polar coordinate,
"x=rcos\\theta," ................................4
"y=rsin\\theta," .................................5
"r=\\sqrt{x^2+y^2}", ........................6
"\\theta=tan^{-1}\\frac{y}{x}" ..............................7
From equation 3 and 6,
"r=2"
Therefore, "0\\le r \\le 2 \\ \\space and \\space 0\\le\\theta\\le2\\pi".
Then, the integral
"\\int_{-2} ^{0} \\int_{-\\sqrt{4-y^2}} ^{\\sqrt{4-y^2}} x^2 dxdy \\newline =\\int_{0} ^{2\\pi} \\int_{0} ^{2} r^2cos^2\\theta(rdr d\\theta)\\newline=\\int_{0} ^{2\\pi} \\int_{0} ^{2} r^3cos^2\\theta dr d\\theta\\newline\n=\\int_{0} ^{2\\pi} [\\frac{r^4}{4}]_{0}^{2}\\space cos^2\\theta dr d\\theta\\newline\n=\\int_{0} ^{2\\pi} 1. cos^2\\theta d\\theta\\newline\n=\\int_{0} ^{2\\pi} \\frac{1+cos2\\theta}{2} d\\theta\\newline\n=\\frac{1}{2}[\\theta+\\frac{sin2\\theta}{2}]_{0}^{2\\pi}\\newline\n=\\pi"
Thus, the value of the given integral is "\\pi".
Comments
Leave a comment