Solution:
1.
∫x3−x23x2−x+1dx
Factor the denominator:
∫(x−1)x23x2−x+1dx
=∫(x−13−x21)dx
=3∫x−11dx−∫x21dx
Now solving these two integration separately
Substitute u=x-1
∫x−11dx=∫u1du=ln(u)=ln(x−1)
∫x21dx=−x1
∴ 3∫x−11dx−∫x21dx=3ln(x−1)+x1
Apply the absolute value function to arguments of logarithm functions in order to extend the anti derivative's domain:
∫x3−x23x2−x+1dx=x1+3ln(∣x−1∣)+C
------------------------------------------------------------------------------------------------------------------------
2.
∫(t+1)3t2dtSubstitute u=t+1⟶dtdu=1⟶ dt=du
=∫u3(u−1)2du=∫(u1−u22+u31)du=∫u1du−2∫u21du+∫u31du
Now solving each integration separately
∫u1du=ln(u)∫u21du=−u1∫u31du=−2u21
∴ ∫u1du−2∫u21du+∫u31du=ln(u)+u2−2u21
re substituting u=t+1
=ln(t+1)+t+12−2(t+1)21
Apply the absolute value function to arguments of logarithm functions in order to extend the antiderivative's domain:
∫(t+1)3t2dt=ln(∣t+1∣)+t+12−2(t+1)21+C
It can be further simplified to
∫(t+1)3t2dt = ln(∣t+1∣)+2t2+4t+24t+3+C
Comments