Integration by Parts Fractions
1.) ∫(3x^2-x+1)/(x^3-x^2)dx
2.) ∫(t^2dt)/(t+1)^3
Solution:
1.
"{\\displaystyle\\int}\\dfrac{3x^2-x+1}{x^3-x^2}\\,\\mathrm{d}x"
Factor the denominator:
"{\\displaystyle\\int}\\dfrac{3x^2-x+1}{\\left(x-1\\right)x^2}\\,\\mathrm{d}x"
"={\\displaystyle\\int}\\left(\\dfrac{3}{x-1}-\\dfrac{1}{x^2}\\right)\\mathrm{d}x\\\\"
"={3}{\\displaystyle\\int}\\dfrac{1}{x-1}\\,\\mathrm{d}x-{\\displaystyle\\int}\\dfrac{1}{x^2}\\,\\mathrm{d}x"
Now solving these two integration separately
Substitute u=x-1
"{\\displaystyle\\int}\\dfrac{1}{x-1}\\,\\mathrm{d}x={\\displaystyle\\int}\\dfrac{1}{u}\\,\\mathrm{d}u=\\ln\\left(u\\right)=\\ln\\left(x-1\\right)"
"{\\displaystyle\\int}\\dfrac{1}{x^2}\\,\\mathrm{d}x=-\\dfrac{1}{x}"
"\\therefore \\ {3}{\\displaystyle\\int}\\dfrac{1}{x-1}\\,\\mathrm{d}x-{\\displaystyle\\int}\\dfrac{1}{x^2}\\,\\mathrm{d}x=3\\ln\\left(x-1\\right)+\\dfrac{1}{x}"
Apply the absolute value function to arguments of logarithm functions in order to extend the anti derivative's domain:
"{\\displaystyle\\int}\\dfrac{3x^2-x+1}{x^3-x^2}\\,\\mathrm{d}x=\\dfrac{1}{x}+3\\ln\\left(\\left|x-1\\right|\\right)+C"
------------------------------------------------------------------------------------------------------------------------
2.
"{\\displaystyle\\int}\\dfrac{t^2}{\\left(t+1\\right)^3}\\,\\mathrm{d}t \\\\ Substitute \\ u=t+1 \\longrightarrow \\dfrac{\\mathrm{d}u}{\\mathrm{d}t} = 1 \\longrightarrow \\ dt=du"
"={\\displaystyle\\int}\\dfrac{\\left(u-1\\right)^2}{u^3}\\,\\mathrm{d}u \\\\\\newline ={\\displaystyle\\int}\\left(\\dfrac{1}{u}-\\dfrac{2}{u^2}+\\dfrac{1}{u^3}\\right)\\mathrm{d}u \\\\ ={\\displaystyle\\int}\\dfrac{1}{u}\\,\\mathrm{d}u-{2}{\\displaystyle\\int}\\dfrac{1}{u^2}\\,\\mathrm{d}u+{\\displaystyle\\int}\\dfrac{1}{u^3}\\,\\mathrm{d}u \\\\"
Now solving each integration separately
"{\\displaystyle\\int}\\dfrac{1}{u}\\,\\mathrm{d}u=\\ln\\left(u\\right)\\\\{\\displaystyle\\int}\\dfrac{1}{u^2}\\,\\mathrm{d}u=-\\dfrac{1}{u}\\\\{\\displaystyle\\int}\\dfrac{1}{u^3}\\,\\mathrm{d}u=-\\dfrac{1}{2u^2}"
"\\therefore \\ {\\displaystyle\\int}\\dfrac{1}{u}\\,\\mathrm{d}u-{2}{\\displaystyle\\int}\\dfrac{1}{u^2}\\,\\mathrm{d}u+{\\displaystyle\\int}\\dfrac{1}{u^3}\\,\\mathrm{d}u=\\ln\\left(u\\right)+\\dfrac{2}{u}-\\dfrac{1}{2u^2}"
re substituting u=t+1
"=\\ln\\left(t+1\\right)+\\dfrac{2}{t+1}-\\dfrac{1}{2\\left(t+1\\right)^2}"
Apply the absolute value function to arguments of logarithm functions in order to extend the antiderivative's domain:
"{\\displaystyle\\int}\\dfrac{t^2}{\\left(t+1\\right)^3}\\,\\mathrm{d}t=\\ln\\left(\\left|t+1\\right|\\right)+\\dfrac{2}{t+1}-\\dfrac{1}{2\\left(t+1\\right)^2}+C"
It can be further simplified to
"{\\displaystyle\\int}\\dfrac{t^2}{\\left(t+1\\right)^3}\\,\\mathrm{d}t \\ = \\ \\ln\\left(\\left|t+1\\right|\\right)+\\dfrac{4t+3}{2t^2+4t+2}+C"
Comments
Leave a comment