Question #185639

Integration by Parts Fractions


1.) ∫(3x^2-x+1)/(x^3-x^2)dx


2.) ∫(t^2dt)/(t+1)^3


1
Expert's answer
2021-05-07T09:33:46-0400

Solution:

1.

3x2x+1x3x2dx{\displaystyle\int}\dfrac{3x^2-x+1}{x^3-x^2}\,\mathrm{d}x

Factor the denominator:

3x2x+1(x1)x2dx{\displaystyle\int}\dfrac{3x^2-x+1}{\left(x-1\right)x^2}\,\mathrm{d}x

=(3x11x2)dx={\displaystyle\int}\left(\dfrac{3}{x-1}-\dfrac{1}{x^2}\right)\mathrm{d}x\\

=31x1dx1x2dx={3}{\displaystyle\int}\dfrac{1}{x-1}\,\mathrm{d}x-{\displaystyle\int}\dfrac{1}{x^2}\,\mathrm{d}x

Now solving these two integration separately

 

Substitute u=x-1 

1x1dx=1udu=ln(u)=ln(x1){\displaystyle\int}\dfrac{1}{x-1}\,\mathrm{d}x={\displaystyle\int}\dfrac{1}{u}\,\mathrm{d}u=\ln\left(u\right)=\ln\left(x-1\right)


1x2dx=1x{\displaystyle\int}\dfrac{1}{x^2}\,\mathrm{d}x=-\dfrac{1}{x}


 31x1dx1x2dx=3ln(x1)+1x\therefore \ {3}{\displaystyle\int}\dfrac{1}{x-1}\,\mathrm{d}x-{\displaystyle\int}\dfrac{1}{x^2}\,\mathrm{d}x=3\ln\left(x-1\right)+\dfrac{1}{x}


Apply the absolute value function to arguments of logarithm functions in order to extend the anti derivative's domain:


3x2x+1x3x2dx=1x+3ln(x1)+C{\displaystyle\int}\dfrac{3x^2-x+1}{x^3-x^2}\,\mathrm{d}x=\dfrac{1}{x}+3\ln\left(\left|x-1\right|\right)+C


------------------------------------------------------------------------------------------------------------------------

2.


t2(t+1)3dtSubstitute u=t+1dudt=1 dt=du{\displaystyle\int}\dfrac{t^2}{\left(t+1\right)^3}\,\mathrm{d}t \\ Substitute \ u=t+1 \longrightarrow \dfrac{\mathrm{d}u}{\mathrm{d}t} = 1 \longrightarrow \ dt=du


=(u1)2u3du=(1u2u2+1u3)du=1udu21u2du+1u3du={\displaystyle\int}\dfrac{\left(u-1\right)^2}{u^3}\,\mathrm{d}u \\\newline ={\displaystyle\int}\left(\dfrac{1}{u}-\dfrac{2}{u^2}+\dfrac{1}{u^3}\right)\mathrm{d}u \\ ={\displaystyle\int}\dfrac{1}{u}\,\mathrm{d}u-{2}{\displaystyle\int}\dfrac{1}{u^2}\,\mathrm{d}u+{\displaystyle\int}\dfrac{1}{u^3}\,\mathrm{d}u \\


Now solving each integration separately


1udu=ln(u)1u2du=1u1u3du=12u2{\displaystyle\int}\dfrac{1}{u}\,\mathrm{d}u=\ln\left(u\right)\\{\displaystyle\int}\dfrac{1}{u^2}\,\mathrm{d}u=-\dfrac{1}{u}\\{\displaystyle\int}\dfrac{1}{u^3}\,\mathrm{d}u=-\dfrac{1}{2u^2}


 1udu21u2du+1u3du=ln(u)+2u12u2\therefore \ {\displaystyle\int}\dfrac{1}{u}\,\mathrm{d}u-{2}{\displaystyle\int}\dfrac{1}{u^2}\,\mathrm{d}u+{\displaystyle\int}\dfrac{1}{u^3}\,\mathrm{d}u=\ln\left(u\right)+\dfrac{2}{u}-\dfrac{1}{2u^2}


re substituting u=t+1


=ln(t+1)+2t+112(t+1)2=\ln\left(t+1\right)+\dfrac{2}{t+1}-\dfrac{1}{2\left(t+1\right)^2}


Apply the absolute value function to arguments of logarithm functions in order to extend the antiderivative's domain:


t2(t+1)3dt=ln(t+1)+2t+112(t+1)2+C{\displaystyle\int}\dfrac{t^2}{\left(t+1\right)^3}\,\mathrm{d}t=\ln\left(\left|t+1\right|\right)+\dfrac{2}{t+1}-\dfrac{1}{2\left(t+1\right)^2}+C


It can be further simplified to 


t2(t+1)3dt = ln(t+1)+4t+32t2+4t+2+C{\displaystyle\int}\dfrac{t^2}{\left(t+1\right)^3}\,\mathrm{d}t \ = \ \ln\left(\left|t+1\right|\right)+\dfrac{4t+3}{2t^2+4t+2}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS