Implicit Differentiation
Find the 2nd derivative of the following:
1) x=3+√x^2 + y^2
2) (x^2 + y^2)^3 = 8x^2y^2
3) x^2(y-x)^3 = 9
1)
"x=3+\\sqrt{x^2+y^2}"
"1=\\frac{1}{2\\sqrt{x^2+y^2}}(2x+2yy')"
"y'=\\frac{\\sqrt{x^2+y^2}-x}{y}"
"yy'=\\sqrt{x^2+y^2}-x"
"(y')^2+yy''=\\frac{x+yy'}{\\sqrt{x^2+y^2}}-1"
from two previous equations
"(y')^2+yy''=0"
"y''=-\\frac{(y')^2}{y}=-\\frac{(\\sqrt{x^2+y^2}-x)^2}{y^3}"
2)
"(x^2+y^2)^3=8x^2y^2"
"3(x^2+y^2)^2(2x+2yy')=16xy^2+16x^2yy'"
"6(x^2+y^2)(2x+2yy')^2+3(x^2+y^2)^2(2+2(y')^2+2yy'')="
"=16y^2+16x*2yy'+32xyy'+16x^2(y')^2+16x^2yy''"
"3x(x^2+y^2)^2-8xy^2=(8x^2y-3y(x^2+y^2)^2)y'"
"y'=\\frac{3x(x^2+y^2)^2-8xy^2}{8x^2y-3y(x^2+y^2)^2}"
3)
"x^2(y-x)^3=9"
"2x(y-x)^3+x^2*3(y-x)^2(y'-1)=0"
"y'-1=\\frac{-2(y-x)}{3x}=-\\frac{2y}{3x}+\\frac{2}{3}"
"y'=-\\frac{2y}{3x}+\\frac{5}{3}"
"y''=-\\frac{2y'*3x-2y*3}{9x^2}=\\frac{2y-2xy'}{3x^2}="
"=\\frac{2y}{3x^2}-\\frac{2}{3x}(-\\frac{2y}{3x}+\\frac{5}{3})="
"=\\frac{10y}{9x^2}-\\frac{10}{9x}=\\frac{10(y-x)}{9x^2}"
Comments
Leave a comment