Question #185401

Implicit Differentiation

Find the 2nd derivative of the following:

1) x=3+√x^2 + y^2

2) (x^2 + y^2)^3 = 8x^2y^2

3) x^2(y-x)^3 = 9


1
Expert's answer
2021-05-07T09:01:22-0400

1)


x=3+x2+y2x=3+\sqrt{x^2+y^2}


1=12x2+y2(2x+2yy)1=\frac{1}{2\sqrt{x^2+y^2}}(2x+2yy')


y=x2+y2xyy'=\frac{\sqrt{x^2+y^2}-x}{y}


yy=x2+y2xyy'=\sqrt{x^2+y^2}-x


(y)2+yy=x+yyx2+y21(y')^2+yy''=\frac{x+yy'}{\sqrt{x^2+y^2}}-1

from two previous equations


(y)2+yy=0(y')^2+yy''=0


y=(y)2y=(x2+y2x)2y3y''=-\frac{(y')^2}{y}=-\frac{(\sqrt{x^2+y^2}-x)^2}{y^3}


2)


(x2+y2)3=8x2y2(x^2+y^2)^3=8x^2y^2


3(x2+y2)2(2x+2yy)=16xy2+16x2yy3(x^2+y^2)^2(2x+2yy')=16xy^2+16x^2yy'


6(x2+y2)(2x+2yy)2+3(x2+y2)2(2+2(y)2+2yy)=6(x^2+y^2)(2x+2yy')^2+3(x^2+y^2)^2(2+2(y')^2+2yy'')=


=16y2+16x2yy+32xyy+16x2(y)2+16x2yy=16y^2+16x*2yy'+32xyy'+16x^2(y')^2+16x^2yy''



3x(x2+y2)28xy2=(8x2y3y(x2+y2)2)y3x(x^2+y^2)^2-8xy^2=(8x^2y-3y(x^2+y^2)^2)y'


y=3x(x2+y2)28xy28x2y3y(x2+y2)2y'=\frac{3x(x^2+y^2)^2-8xy^2}{8x^2y-3y(x^2+y^2)^2}


3)


x2(yx)3=9x^2(y-x)^3=9


2x(yx)3+x23(yx)2(y1)=02x(y-x)^3+x^2*3(y-x)^2(y'-1)=0


y1=2(yx)3x=2y3x+23y'-1=\frac{-2(y-x)}{3x}=-\frac{2y}{3x}+\frac{2}{3}


y=2y3x+53y'=-\frac{2y}{3x}+\frac{5}{3}


y=2y3x2y39x2=2y2xy3x2=y''=-\frac{2y'*3x-2y*3}{9x^2}=\frac{2y-2xy'}{3x^2}=


=2y3x223x(2y3x+53)==\frac{2y}{3x^2}-\frac{2}{3x}(-\frac{2y}{3x}+\frac{5}{3})=


=10y9x2109x=10(yx)9x2=\frac{10y}{9x^2}-\frac{10}{9x}=\frac{10(y-x)}{9x^2}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS