Question #185633

Integration by Parts Fractions

∫dy/(y^2+2y)


1
Expert's answer
2021-04-27T08:51:47-0400

Let

1y2+2y=1y(y+2)=Ay+By+2=Ay+2A+Byy(y+2)=(A+B)y+2Ay(y+2)\frac{1}{{{y^2} + 2y}} = \frac{1}{{y(y + 2)}} = \frac{A}{y} + \frac{B}{{y + 2}} = \frac{{Ay + 2A + By}}{{y(y + 2)}} = \frac{{\left( {A + B} \right)y + 2A}}{{y(y + 2)}}

Then

{A+B=02A=1\left\{ \begin{array}{l} A + B = 0\\ 2A = 1 \end{array} \right.

{A=12B=12\left\{ \begin{array}{l} A = \frac{1}{2}\\ B = - \frac{1}{2} \end{array} \right.

Then

dyy2+2y=12dyy12dyy+2=12lny12lny+2+C\int {\frac{{dy}}{{{y^2} + 2y}} = \frac{1}{2}} \int {\frac{{dy}}{y}} - \frac{1}{2}\int {\frac{{dy}}{{y + 2}} = \frac{1}{2}} \ln |y| - \frac{1}{2}\ln |y + 2| + C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS