Integration by Parts Fractions
∫dy/(y^2+2y)
Let
1y2+2y=1y(y+2)=Ay+By+2=Ay+2A+Byy(y+2)=(A+B)y+2Ay(y+2)\frac{1}{{{y^2} + 2y}} = \frac{1}{{y(y + 2)}} = \frac{A}{y} + \frac{B}{{y + 2}} = \frac{{Ay + 2A + By}}{{y(y + 2)}} = \frac{{\left( {A + B} \right)y + 2A}}{{y(y + 2)}}y2+2y1=y(y+2)1=yA+y+2B=y(y+2)Ay+2A+By=y(y+2)(A+B)y+2A
Then
{A+B=02A=1\left\{ \begin{array}{l} A + B = 0\\ 2A = 1 \end{array} \right.{A+B=02A=1
{A=12B=−12\left\{ \begin{array}{l} A = \frac{1}{2}\\ B = - \frac{1}{2} \end{array} \right.{A=21B=−21
∫dyy2+2y=12∫dyy−12∫dyy+2=12ln∣y∣−12ln∣y+2∣+C\int {\frac{{dy}}{{{y^2} + 2y}} = \frac{1}{2}} \int {\frac{{dy}}{y}} - \frac{1}{2}\int {\frac{{dy}}{{y + 2}} = \frac{1}{2}} \ln |y| - \frac{1}{2}\ln |y + 2| + C∫y2+2ydy=21∫ydy−21∫y+2dy=21ln∣y∣−21ln∣y+2∣+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments