Integration by Parts Fractions
1.) ∫dz/z+z^3
2.) ∫(2s+1)ds/s^2(s^2+1)
1) "\\intop \\frac{dz}{z+z^3}=\\intop \\frac{dz}{z(1+z^2)}=\\intop \\frac{(z^2+1-z^2)dz}{z(1+z^2)}=\\intop (\\frac{z^2+1}{z(1+z^2)}-\\frac{z^2}{z(1+z^2)})dz="
"=\\int(\\frac{1}{z}-\\frac{z}{1+z^2})dz =\\int \\frac{1}{z}dz-\\int\\frac{z}{1+z^2}dz=ln|z|-\\frac{1}{2}\\int\\frac{2z}{1+z^2}dz=""=ln|z|-\\frac{1}{2}\\int \\frac{d(1+z^2)}{1+z^2}=ln |z|-\\frac{1}{2}ln(1+z^2)+C"2) Use partial fractions:
Hense,
"\\int \\frac{(2s+1)ds}{s^2(s^2+1)}=\\int\\frac{2}{s}ds+\\int\\frac{1}{s^2}ds-\\int\\frac{2s+1}{s^2+1}ds="
"=2ln|s|-\\frac{1}{s}-\\int\\frac{2s}{s^2+1}ds-\\int\\frac{ds}{s^2+1}=""=2ln|s|-\\frac{1}{s}-ln(s^2+1)-tan^{-1}(s^2+1)+C"
Comments
Leave a comment