1) ∫ d z z + z 3 = ∫ d z z ( 1 + z 2 ) = ∫ ( z 2 + 1 − z 2 ) d z z ( 1 + z 2 ) = ∫ ( z 2 + 1 z ( 1 + z 2 ) − z 2 z ( 1 + z 2 ) ) d z = \intop \frac{dz}{z+z^3}=\intop \frac{dz}{z(1+z^2)}=\intop \frac{(z^2+1-z^2)dz}{z(1+z^2)}=\intop (\frac{z^2+1}{z(1+z^2)}-\frac{z^2}{z(1+z^2)})dz= ∫ z + z 3 d z = ∫ z ( 1 + z 2 ) d z = ∫ z ( 1 + z 2 ) ( z 2 + 1 − z 2 ) d z = ∫ ( z ( 1 + z 2 ) z 2 + 1 − z ( 1 + z 2 ) z 2 ) d z =
= ∫ ( 1 z − z 1 + z 2 ) d z = ∫ 1 z d z − ∫ z 1 + z 2 d z = l n ∣ z ∣ − 1 2 ∫ 2 z 1 + z 2 d z = =\int(\frac{1}{z}-\frac{z}{1+z^2})dz =\int \frac{1}{z}dz-\int\frac{z}{1+z^2}dz=ln|z|-\frac{1}{2}\int\frac{2z}{1+z^2}dz= = ∫ ( z 1 − 1 + z 2 z ) d z = ∫ z 1 d z − ∫ 1 + z 2 z d z = l n ∣ z ∣ − 2 1 ∫ 1 + z 2 2 z d z = = l n ∣ z ∣ − 1 2 ∫ d ( 1 + z 2 ) 1 + z 2 = l n ∣ z ∣ − 1 2 l n ( 1 + z 2 ) + C =ln|z|-\frac{1}{2}\int \frac{d(1+z^2)}{1+z^2}=ln |z|-\frac{1}{2}ln(1+z^2)+C = l n ∣ z ∣ − 2 1 ∫ 1 + z 2 d ( 1 + z 2 ) = l n ∣ z ∣ − 2 1 l n ( 1 + z 2 ) + C 2) Use partial fractions:
2 s + 1 s 2 ( s 2 + 1 ) = A s + B s 2 + C s + D s 2 + 1 = A s 3 + A s + B s 2 + B + C s 3 + D s 2 s 2 ( s 2 + 1 ) \frac{2s+1}{s^2(s^2+1)}=\frac{A}{s}+\frac{B}{s^2}+\frac{Cs+D}{s^2+1}=\frac{As^3+As+Bs^2+B+Cs^3+Ds^2}{s^2(s^2+1)} s 2 ( s 2 + 1 ) 2 s + 1 = s A + s 2 B + s 2 + 1 C s + D = s 2 ( s 2 + 1 ) A s 3 + A s + B s 2 + B + C s 3 + D s 2 2 s + 1 = ( A + C ) s 3 + ( B + D ) s 2 + A s + B 2s+1=(A+C)s^3+(B+D)s^2+As+B 2 s + 1 = ( A + C ) s 3 + ( B + D ) s 2 + A s + B { B = 1 , A = 2 , B + D = 0 , A + C = 0 \begin{cases}
B=1,
\\
A=2,
\\
B+D=0,
\\
A+C=0
\end{cases} ⎩ ⎨ ⎧ B = 1 , A = 2 , B + D = 0 , A + C = 0 { B = 1 , A = 2 , D = − 1 , C = − 2 \begin{cases}
B=1,
\\
A=2,
\\
D=-1,
\\
C=-2
\end{cases} ⎩ ⎨ ⎧ B = 1 , A = 2 , D = − 1 , C = − 2 2 s + 1 s 2 ( s 2 + 1 ) = 2 s + 1 s 2 − 2 s + 1 s 2 + 1 \frac{2s+1}{s^2(s^2+1)}=\frac{2}{s}+\frac{1}{s^2}-\frac{2s+1}{s^2+1} s 2 ( s 2 + 1 ) 2 s + 1 = s 2 + s 2 1 − s 2 + 1 2 s + 1 Hense,
∫ ( 2 s + 1 ) d s s 2 ( s 2 + 1 ) = ∫ 2 s d s + ∫ 1 s 2 d s − ∫ 2 s + 1 s 2 + 1 d s = \int \frac{(2s+1)ds}{s^2(s^2+1)}=\int\frac{2}{s}ds+\int\frac{1}{s^2}ds-\int\frac{2s+1}{s^2+1}ds= ∫ s 2 ( s 2 + 1 ) ( 2 s + 1 ) d s = ∫ s 2 d s + ∫ s 2 1 d s − ∫ s 2 + 1 2 s + 1 d s =
= 2 l n ∣ s ∣ − 1 s − ∫ 2 s s 2 + 1 d s − ∫ d s s 2 + 1 = =2ln|s|-\frac{1}{s}-\int\frac{2s}{s^2+1}ds-\int\frac{ds}{s^2+1}= = 2 l n ∣ s ∣ − s 1 − ∫ s 2 + 1 2 s d s − ∫ s 2 + 1 d s = = 2 l n ∣ s ∣ − 1 s − l n ( s 2 + 1 ) − t a n − 1 ( s 2 + 1 ) + C =2ln|s|-\frac{1}{s}-ln(s^2+1)-tan^{-1}(s^2+1)+C = 2 l n ∣ s ∣ − s 1 − l n ( s 2 + 1 ) − t a n − 1 ( s 2 + 1 ) + C
Comments