Question #185643

Integration by Parts Fractions


1.) ∫dz/z+z^3


2.) ∫(2s+1)ds/s^2(s^2+1)


1
Expert's answer
2021-05-07T09:34:44-0400

1) dzz+z3=dzz(1+z2)=(z2+1z2)dzz(1+z2)=(z2+1z(1+z2)z2z(1+z2))dz=\intop \frac{dz}{z+z^3}=\intop \frac{dz}{z(1+z^2)}=\intop \frac{(z^2+1-z^2)dz}{z(1+z^2)}=\intop (\frac{z^2+1}{z(1+z^2)}-\frac{z^2}{z(1+z^2)})dz=

=(1zz1+z2)dz=1zdzz1+z2dz=lnz122z1+z2dz==\int(\frac{1}{z}-\frac{z}{1+z^2})dz =\int \frac{1}{z}dz-\int\frac{z}{1+z^2}dz=ln|z|-\frac{1}{2}\int\frac{2z}{1+z^2}dz==lnz12d(1+z2)1+z2=lnz12ln(1+z2)+C=ln|z|-\frac{1}{2}\int \frac{d(1+z^2)}{1+z^2}=ln |z|-\frac{1}{2}ln(1+z^2)+C

2) Use partial fractions:


2s+1s2(s2+1)=As+Bs2+Cs+Ds2+1=As3+As+Bs2+B+Cs3+Ds2s2(s2+1)\frac{2s+1}{s^2(s^2+1)}=\frac{A}{s}+\frac{B}{s^2}+\frac{Cs+D}{s^2+1}=\frac{As^3+As+Bs^2+B+Cs^3+Ds^2}{s^2(s^2+1)}2s+1=(A+C)s3+(B+D)s2+As+B2s+1=(A+C)s^3+(B+D)s^2+As+B{B=1,A=2,B+D=0,A+C=0\begin{cases} B=1, \\ A=2, \\ B+D=0, \\ A+C=0 \end{cases}{B=1,A=2,D=1,C=2\begin{cases} B=1, \\ A=2, \\ D=-1, \\ C=-2 \end{cases}2s+1s2(s2+1)=2s+1s22s+1s2+1\frac{2s+1}{s^2(s^2+1)}=\frac{2}{s}+\frac{1}{s^2}-\frac{2s+1}{s^2+1}

Hense,

(2s+1)dss2(s2+1)=2sds+1s2ds2s+1s2+1ds=\int \frac{(2s+1)ds}{s^2(s^2+1)}=\int\frac{2}{s}ds+\int\frac{1}{s^2}ds-\int\frac{2s+1}{s^2+1}ds=

=2lns1s2ss2+1dsdss2+1==2ln|s|-\frac{1}{s}-\int\frac{2s}{s^2+1}ds-\int\frac{ds}{s^2+1}==2lns1sln(s2+1)tan1(s2+1)+C=2ln|s|-\frac{1}{s}-ln(s^2+1)-tan^{-1}(s^2+1)+C



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS