Integration by Parts Fractions
1.) ∫4dx/(x^4-1)
2.) ∫8dx/x(x^2+2)^2
1) ∫ 4 dx / (x^4 - 1)
We know that x4 - 1 = (x2 -1) * (x2 +1)
Also (x2 +1) - (x2 -1) = 2
So the above integral can be written as
2 ∫ [(x2+1) - (x2-1)] dx / (x2+1) * (x2-1)
2 ∫ [1/(x2-1) - 1/(x2+1) ] dx
2 ln(x-1/x+1) - 2 arctan (x) + c [Since ∫ dx/x2 - a2 = (1/2a ) ln(x-a/ x+a) + c
and ∫ dx/a2+x2 = (1/a ) arctan(x/a) + c ]
2) ∫ 8 dx/ x(x2+2)2
The above integral can be expressed as a sum of partial fractions as shown below
8 / x(x2+2)2 = A/x + Bx/(x2+2) + Cx/ (x2+2)2
On comparing the coefficients in LHS and RHS and solving them we have
A = 2
B = -2
C = -4
Now the above integral takes the form
∫ [ 2/x - 2x/(x2+2) - 4x/ (x2+2)2 ] dx
Let I1 = ∫ 2 dx/x
I2 = ∫ 2x dx/(x2+2)
I3 = ∫ 4x dx/(x2+2)2 ................(1)
I1 = 2 ln(x)
For I2 ,
Let x2+2 = t
2x dx = dt
∴ I2 = ∫ dt / t
= ln(t)
= ln( x2+2 ) ....................(2)
For I3 ,
Let x2+2 = u
2x dx = du
∴ I3 = 2 ∫ du / u2
= - 2 /u
= -2/ (x2+2) ................(3)
∴ ∫ 8 dx/ x(x2+2)2 = I1 - I2 - I3
= 2 ln(x) - ln (x2 + 2) + 2 / (x2 + 2) + c
= ln[ x2 / (x2 + 2)] + 2 / (x2+2) + c
Comments
Leave a comment