We define
ǀn=∫−π/4π/4sec6tdt=[n−1tantsecn−2t]−π/4π/4+n−11n−2ǀn−2,n≥2
As the reduction formula for the integral
؞ǀ6=∫sec6tdt
=[5tantsec4t]−π/4π/4+54ǀ4…(i)
ǀ4=[3tantsec2t]−π/4π/4+32ǀ2…(ii)
ǀ2=[tant]−π)/4π/4…(iii)
Replacing (iii) in (ii) and replacing (ii) in (i) gives
ǀ6=[51tantsec4t+154tantsec2t+158tant]−π)/4π/4
∫−π)/4π/4sec6tdt=[51(1)2)4+154(1)2)2+158(−1)]−[51(−1)sqrt24+154(−1)22)+158(−1)]=1556=3.73
Comments