Question #175023

∫ Sec^6 t dt from (-π/4) to (π/4)


1
Expert's answer
2021-04-20T16:25:30-0400

We define 

ǀn=π/4π/4sec6tdt=[tantsecn2tn1]π/4π/4+n2n11ǀn2,n2ǀ_n=∫_{-π/4}^{π/4}sec^6 t dt =[\frac {tan tsec^{n-2} t }{n-1}] ^{π/4}_{-π/4} + \frac {n-2}{n-11}ǀ_{n-2},n≥2

As the reduction formula for the integral

؞ǀ6=sec6tdt؞ ǀ_6=∫sec^6 t dt

=[tantsec4t5]π/4π/4+45ǀ4(i)=[\frac {tan t sec ^4 t}{5}]_{-π/4} ^{π/4} + \frac 45 ǀ_4…(i)


ǀ4=[tantsec2t3]π/4π/4+23ǀ2(ii)ǀ_4=[\frac {tan t sec ^2 t}{3}]^{\pi/4} _{-\pi/4}+ \frac 23 ǀ_2…(ii)

ǀ2=[tant]π)/4π/4(iii)ǀ_2= [ tan t]^{π/4} _{-π)/4}…(iii)

Replacing (iii) in (ii) and replacing (ii) in (i) gives

ǀ6=[15tantsec4t+415tantsec2t+815tant]π)/4π/4ǀ_6=[\frac 15 tan t sec^4 t+\frac 4{15} tan t sec ^2 t+ \frac 8{15} tan t]^{π/4} _{-π)/4}

π)/4π/4sec6tdt=[15(1)2)4+415(1)2)2+815(1)][15(1)sqrt24+415(1)22)+815(1)]=5615=3.73∫_{-π)/4}^{π/4}sec^6 t dt= [\frac15 (1) \sqrt2) ^4 + \frac 4{15} (1) \sqrt2)^2+ \frac 8{15} (-1)] - [\frac 15 (-1) sqrt2^4+ \frac 4{15} (-1)\sqrt 2^2 )+\frac 8{15 }(-1)] =\frac {56}{15}=3.73


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS