We define
ǀ n = ∫ − π / 4 π / 4 s e c 6 t d t = [ t a n t s e c n − 2 t n − 1 ] − π / 4 π / 4 + n − 2 n − 11 ǀ n − 2 , n ≥ 2 ǀ_n=∫_{-π/4}^{π/4}sec^6 t dt =[\frac {tan tsec^{n-2} t }{n-1}] ^{π/4}_{-π/4} + \frac {n-2}{n-11}ǀ_{n-2},n≥2 ǀ n = ∫ − π /4 π /4 se c 6 t d t = [ n − 1 t an t se c n − 2 t ] − π /4 π /4 + n − 11 n − 2 ǀ n − 2 , n ≥ 2
As the reduction formula for the integral
؞ ǀ 6 = ∫ s e c 6 t d t ؞ ǀ_6=∫sec^6 t dt ؞ ǀ 6 = ∫ se c 6 t d t
= [ t a n t s e c 4 t 5 ] − π / 4 π / 4 + 4 5 ǀ 4 … ( i ) =[\frac {tan t sec ^4 t}{5}]_{-π/4} ^{π/4} + \frac 45 ǀ_4…(i) = [ 5 t an t se c 4 t ] − π /4 π /4 + 5 4 ǀ 4 … ( i )
ǀ 4 = [ t a n t s e c 2 t 3 ] − π / 4 π / 4 + 2 3 ǀ 2 … ( i i ) ǀ_4=[\frac {tan t sec ^2 t}{3}]^{\pi/4} _{-\pi/4}+ \frac 23 ǀ_2…(ii) ǀ 4 = [ 3 t an t se c 2 t ] − π /4 π /4 + 3 2 ǀ 2 … ( ii )
ǀ 2 = [ t a n t ] − π ) / 4 π / 4 … ( i i i ) ǀ_2= [ tan t]^{π/4} _{-π)/4}…(iii) ǀ 2 = [ t an t ] − π ) /4 π /4 … ( iii )
Replacing (iii) in (ii) and replacing (ii) in (i) gives
ǀ 6 = [ 1 5 t a n t s e c 4 t + 4 15 t a n t s e c 2 t + 8 15 t a n t ] − π ) / 4 π / 4 ǀ_6=[\frac 15 tan t sec^4 t+\frac 4{15} tan t sec ^2 t+ \frac 8{15} tan t]^{π/4} _{-π)/4} ǀ 6 = [ 5 1 t an t se c 4 t + 15 4 t an t se c 2 t + 15 8 t an t ] − π ) /4 π /4
∫ − π ) / 4 π / 4 s e c 6 t d t = [ 1 5 ( 1 ) 2 ) 4 + 4 15 ( 1 ) 2 ) 2 + 8 15 ( − 1 ) ] − [ 1 5 ( − 1 ) s q r t 2 4 + 4 15 ( − 1 ) 2 2 ) + 8 15 ( − 1 ) ] = 56 15 = 3.73 ∫_{-π)/4}^{π/4}sec^6 t dt= [\frac15 (1) \sqrt2) ^4 + \frac 4{15} (1) \sqrt2)^2+ \frac 8{15} (-1)] - [\frac 15 (-1) sqrt2^4+ \frac 4{15} (-1)\sqrt 2^2 )+\frac 8{15 }(-1)]
=\frac {56}{15}=3.73 ∫ − π ) /4 π /4 se c 6 t d t = [ 5 1 ( 1 ) 2 ) 4 + 15 4 ( 1 ) 2 ) 2 + 15 8 ( − 1 )] − [ 5 1 ( − 1 ) s q r t 2 4 + 15 4 ( − 1 ) 2 2 ) + 15 8 ( − 1 )] = 15 56 = 3.73
Comments