∫ Sec^6 t dt from (-π/4) to (π/4)
We define
"\u01c0_n=\u222b_{-\u03c0\/4}^{\u03c0\/4}sec^6 t dt =[\\frac {tan tsec^{n-2} t }{n-1}] ^{\u03c0\/4}_{-\u03c0\/4} + \\frac {n-2}{n-11}\u01c0_{n-2},n\u22652"
As the reduction formula for the integral
"\u061e \u01c0_6=\u222bsec^6 t dt"
"=[\\frac {tan t sec ^4 t}{5}]_{-\u03c0\/4} ^{\u03c0\/4} + \\frac 45 \u01c0_4\u2026(i)"
"\u01c0_4=[\\frac {tan t sec ^2 t}{3}]^{\\pi\/4} _{-\\pi\/4}+ \\frac 23 \u01c0_2\u2026(ii)"
"\u01c0_2= [ tan t]^{\u03c0\/4} _{-\u03c0)\/4}\u2026(iii)"
Replacing (iii) in (ii) and replacing (ii) in (i) gives
"\u01c0_6=[\\frac 15 tan t sec^4 t+\\frac 4{15} tan t sec ^2 t+ \\frac 8{15} tan t]^{\u03c0\/4} _{-\u03c0)\/4}"
"\u222b_{-\u03c0)\/4}^{\u03c0\/4}sec^6 t dt= [\\frac15 (1) \\sqrt2) ^4 + \\frac 4{15} (1) \\sqrt2)^2+ \\frac 8{15} (-1)] - [\\frac 15 (-1) sqrt2^4+ \\frac 4{15} (-1)\\sqrt 2^2 )+\\frac 8{15 }(-1)]\n\n=\\frac {56}{15}=3.73"
Comments
Leave a comment