∫ x tan² 3x² dx
"\\displaystyle\\int x \\tan^2 (3x^2) dx"
Note that if
"d(3x^2)=(3x^2)'dx=6xdx"
then
"xdx=\\dfrac{1}{6}\\cdot d(3x^2)"
"\\displaystyle\\int x\\cdot \\tan^2 (3x^2) dx="
"\\displaystyle\\int \\tan^2 (3x^2)\\cdot x dx="
"\\displaystyle\\int \\tan^2 (3x^2)\\cdot \\dfrac{1}{6}\\cdot d(3x^2)="
"\\dfrac{1}{6}\\cdot\\displaystyle\\int \\tan^2 (3x^2)\\cdot d(3x^2)"
Further substitute
"\\tan (3x^2)=t"
Hence
"3x^2=\\arctan(t)"
"d(3x^2)=d(\\arctan(t))=(\\arctan(t))'dt=\\dfrac{1}{t^2+1}dt"
Continue solving
"\\dfrac{1}{6}\\cdot\\displaystyle\\int \\tan^2 (3x^2)\\cdot d(3x^2)="
"\\dfrac{1}{6}\\cdot\\displaystyle\\int t^2 \\cdot \\dfrac{1}{t^2+1}dt="
"\\dfrac{1}{6}\\cdot\\displaystyle\\int \\dfrac{t^2}{t^2+1}dt="
"\\dfrac{1}{6}\\cdot\\displaystyle\\int \\dfrac{t^2+1-1}{t^2+1}dt="
"\\dfrac{1}{6}\\cdot\\displaystyle\\int \\left(\\dfrac{t^2+1}{t^2+1}-\\dfrac{1}{t^2+1}\\right)dt="
"\\dfrac{1}{6}\\cdot\\displaystyle\\int \\left(1-\\dfrac{1}{t^2+1}\\right)dt="
"\\dfrac{1}{6}\\cdot\\displaystyle \\left(t-\\arctan(t)\\right)+c=" <return to variable "x": "t=\\tan (3x^2)" >
"\\dfrac{1}{6}\\cdot\\displaystyle \\left(\\tan (3x^2)-\\arctan(\\tan (3x^2))\\right)+c="
"\\dfrac{1}{6}\\cdot\\displaystyle \\left(\\tan (3x^2)-3x^2\\right)+c="
"\\dfrac{1}{6}\\tan (3x^2)-\\dfrac{1}{6}\\cdot3x^2+c="
"\\dfrac{1}{6}\\tan (3x^2)-\\dfrac{x^2}{2} +c"
Comments
Leave a comment