∫ sin³ x cos³ x dx
"\\int \\sin^3 x \\cos ^3 x dx"
Let "t =\\cos x" , "dt = - \\sin x dx" . Then "\\int \\sin^3 x \\cos ^3 x dx = \\int -\\sin^2x \\, t^3 dt"
Also, "\\sin^2x = 1 -\\cos^2x = 1-t^2" . So integral can be re-written as
"\\displaystyle \\int -(1-t^2) t^3 dt = - \\int(t^3-t^5)dt = \\frac{-t^4}{4} + \\frac{t^6}{6} + C = \\frac{\\cos^6x}{6} - \\frac{\\cos^4x}{4}+C"
Answer: "\\displaystyle \\frac{\\cos^6x}{6} - \\frac{\\cos^4x}{4}+C"
Comments
Leave a comment