Question #174651

d/dx integral (top value=x^2, lower value=1) tan(t^3)dt


1
Expert's answer
2021-03-25T13:15:20-0400

ddx(α(x)β(x)f(t,x)dt)=α(x)β(x)(fx(t,x))dt+f(β(x),x)β(x)f(α(x),x)α(x)\cfrac{d}{dx}(\int_{\alpha(x)}^{\beta(x)} f(t,x)dt) = \int_{\alpha(x)}^{\beta(x)}(\cfrac{\partial f}{\partial x}(t,x))dt + f(\beta(x),x) *\beta\prime(x) - f(\alpha(x), x)*\alpha\prime(x)


ddx(1x2tan(t3)dx)=1x2(tan(t3))xdx+2xtan(x6)tan(1)0==0+2xtan(x6)0=2xtan(x6)\cfrac{d}{dx}(\int_{1}^{x^2}\tan(t^3)dx) = \int_{1}^{x^2}\cfrac{\partial(\tan(t^3))}{\partial x}dx + 2x\tan(x^6) -\tan(1)*0=\\ =0 + 2x\tan(x^6) - 0 = 2x\tan(x^6)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS