d/dx integral (top value=x^2, lower value=1) tan(t^3)dt
"\\cfrac{d}{dx}(\\int_{\\alpha(x)}^{\\beta(x)} f(t,x)dt) = \\int_{\\alpha(x)}^{\\beta(x)}(\\cfrac{\\partial f}{\\partial x}(t,x))dt + f(\\beta(x),x) *\\beta\\prime(x) - f(\\alpha(x), x)*\\alpha\\prime(x)"
"\\cfrac{d}{dx}(\\int_{1}^{x^2}\\tan(t^3)dx) = \\int_{1}^{x^2}\\cfrac{\\partial(\\tan(t^3))}{\\partial x}dx + 2x\\tan(x^6) -\\tan(1)*0=\\\\\n=0 + 2x\\tan(x^6) - 0 = 2x\\tan(x^6)"
Comments
Leave a comment