d/dx integral (top value=x^2, lower value=1) tan(t^3)dt
ddx(∫α(x)β(x)f(t,x)dt)=∫α(x)β(x)(∂f∂x(t,x))dt+f(β(x),x)∗β′(x)−f(α(x),x)∗α′(x)\cfrac{d}{dx}(\int_{\alpha(x)}^{\beta(x)} f(t,x)dt) = \int_{\alpha(x)}^{\beta(x)}(\cfrac{\partial f}{\partial x}(t,x))dt + f(\beta(x),x) *\beta\prime(x) - f(\alpha(x), x)*\alpha\prime(x)dxd(∫α(x)β(x)f(t,x)dt)=∫α(x)β(x)(∂x∂f(t,x))dt+f(β(x),x)∗β′(x)−f(α(x),x)∗α′(x)
ddx(∫1x2tan(t3)dx)=∫1x2∂(tan(t3))∂xdx+2xtan(x6)−tan(1)∗0==0+2xtan(x6)−0=2xtan(x6)\cfrac{d}{dx}(\int_{1}^{x^2}\tan(t^3)dx) = \int_{1}^{x^2}\cfrac{\partial(\tan(t^3))}{\partial x}dx + 2x\tan(x^6) -\tan(1)*0=\\ =0 + 2x\tan(x^6) - 0 = 2x\tan(x^6)dxd(∫1x2tan(t3)dx)=∫1x2∂x∂(tan(t3))dx+2xtan(x6)−tan(1)∗0==0+2xtan(x6)−0=2xtan(x6)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments