Evaluate the integral of xe^(x²) dx from 0 to 1
∫01xex2dx=[x2=u,2xdx=du,xdx=12du,1→1,0→0]==12∫01eudu=12eu∣01=e−12\int_0^1xe^{x^2}dx = [x^2 = u, 2xdx=du, xdx=\cfrac{1}{2}du, 1\to1,0\to0] =\\ =\cfrac{1}{2}\int_0^1e^udu = \cfrac{1}{2}e^u|_0^1 = \cfrac{e-1}{2}∫01xex2dx=[x2=u,2xdx=du,xdx=21du,1→1,0→0]==21∫01eudu=21eu∣01=2e−1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments