Evaluate the integral of (sin x + cosx)² dx
∫(sinx+cosx)2 dx=∫sin2x+2sinxcosx+cos2x dx=∫(sin2x+cos2x) dx+∫2sinxcosx dx=∫dx+∫2sinx d(sinx)=x+sin2x+C\int (\sin x + \cos x)^2\,dx = \\ \int \sin^2 x + 2\sin x\cos x + \cos^2 x\,dx = \\ \int (\sin^2 x + \cos^2 x) \,dx + \int 2\sin x \cos x \,dx = \\ \int dx + \int 2\sin x \,d(\sin x) = \\ x + \sin^2 x + C∫(sinx+cosx)2dx=∫sin2x+2sinxcosx+cos2xdx=∫(sin2x+cos2x)dx+∫2sinxcosxdx=∫dx+∫2sinxd(sinx)=x+sin2x+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments