Convert the expression x−3x3−2x+5 so that the numerator contains a polynomial of smaller degree than the denominator
x−3x3−2x+5=x−3x3−3x2+3x2−9x+7x−21+26=
=x−3x2(x−3)+3x(x−3)+7(x−3)+26=x2+3x+7+x−326 Therefore, we can start evaluating the integral,
∫x−3x3−2x+5dx=∫(x2+3x+7+x−326)dx=
=3x3+23x2+7x+26ln∣x−3∣+C
Comments
Leave a comment