Evaluate the integral of e^x + e^(-x) dx/(e^x - e^(-x))
GIVEN:
"\\int{e^x+ e^{-x}\\over e^x- e^{-x}}dx"
LET,
"e^x-e^{-x}" =t
Therefore,
Differentiating this we get,
"(e^x+ e^{-x})" dx=dt
Then,
"\\int{dt\\over t}" We get,
"=ln(t)\\\\=ln(e^x-e^{-x})+c" ....answer
Comments
Leave a comment