Evaluate the integral of e^x + e^(-x) dx/(e^x - e^(-x))
GIVEN:
∫ex+e−xex−e−xdx\int{e^x+ e^{-x}\over e^x- e^{-x}}dx∫ex−e−xex+e−xdx
LET,
ex−e−xe^x-e^{-x}ex−e−x =t
Therefore,
Differentiating this we get,
(ex+e−x)(e^x+ e^{-x})(ex+e−x) dx=dt
Then,
∫dtt\int{dt\over t}∫tdt We get,
=ln(t)=ln(ex−e−x)+c=ln(t)\\=ln(e^x-e^{-x})+c=ln(t)=ln(ex−e−x)+c ....answer
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments