Answer to Question #175012 in Calculus for Phyroe

Question #175012

∫ sec^n β tan β dβ


1
Expert's answer
2021-04-15T06:56:09-0400

=sin(β)cosn+1(β)dβ=\int \frac{\sin \left(β\right)}{\cos ^{n+1}\left(β\right)}dβ

=sin(β)cosn+1(β)dβ=\int \frac{\sin \left(β\right)}{\cos ^{n+1}\left(β\right)}dβ

=1un+1du=\int \:-\frac{1}{u^{n+1}}du

1un+1=un1\frac{1}{u^{n+1}}=u^{-n-1}

=un1du=-\int \:u^{-n-1}du

=un1+1n1+1=-\frac{u^{-n-1+1}}{-n-1+1}

=cosn1+1(β)n1+1=-\frac{\cos ^{-n-1+1}\left(β\right)}{-n-1+1}

=1ncosn(β)=\frac{1}{n}\cos ^{-n}\left(β\right)

=1ncosn(β)+C=\frac{1}{n}\cos ^{-n}\left(β\right)+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment