∫ sec^n β tan β dβ
=∫sin(β)cosn+1(β)dβ=\int \frac{\sin \left(β\right)}{\cos ^{n+1}\left(β\right)}dβ=∫cosn+1(β)sin(β)dβ
=∫ −1un+1du=\int \:-\frac{1}{u^{n+1}}du=∫−un+11du
1un+1=u−n−1\frac{1}{u^{n+1}}=u^{-n-1}un+11=u−n−1
=−∫ u−n−1du=-\int \:u^{-n-1}du=−∫u−n−1du
=−u−n−1+1−n−1+1=-\frac{u^{-n-1+1}}{-n-1+1}=−−n−1+1u−n−1+1
=−cos−n−1+1(β)−n−1+1=-\frac{\cos ^{-n-1+1}\left(β\right)}{-n-1+1}=−−n−1+1cos−n−1+1(β)
=1ncos−n(β)=\frac{1}{n}\cos ^{-n}\left(β\right)=n1cos−n(β)
=1ncos−n(β)+C=\frac{1}{n}\cos ^{-n}\left(β\right)+C=n1cos−n(β)+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment