Answer to Question #175021 in Calculus for Phyroe

Question #175021

∫ tan⁴ (½)z dz


1
Expert's answer
2021-04-20T15:23:14-0400

"\u222btan^4\u2061(1\/2 z) dz"

let "u=1\/2 z \u21d2 du= 1\/2 dz or 2du=dz"

"\u061e \u222btan^4\u2061(1\/2 z) dz=2\u222btan^4\u2061 udu \u2026(i)"

we define

"\u01c0_n= \u222btan^n\u2061 udu= (tan^{n-1} u)\/(n-1) - \u01c0_(n-1) for n\u22652"

as the reduction formula

thus,

"\u01c0_4= \u222btan^4\u2061udu= tan^3\u2061u \/3- \u01c0_2 \u2026(ii)"

"\u01c0_2 = \u222btan^2\u2061u du= tan\u2061u- \u01c0_0 \u2026(iii)"

"\u01c0_0 = \u222bdu=u \u2026(iv)"

replacing (iv) in (iii) gives

"\u01c0_(2 )=tan\u2061 u-u \u2026(v)"

replacing (v) in (ii) gives

"\u01c0_4 = tan^3\u2061u \/3-(tan\u2061u-u)"

"tan^3\u2061u \/3-tan\u2061u -u \u2026(vi)"

replacing (vi) in (i) gives

"\u222btan^4\u2061(1\/2 z)dz =2[tan^3\u2061(1\/2 z)\/3-tan\u2061(1\/2 z)+ 1\/2 z] +c"

"=2\/3 tan^3\u2061(1\/2 z )-2tan\u2061(1\/2 z)+z+c"





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS