Question #175021

∫ tan⁴ (½)z dz


1
Expert's answer
2021-04-20T15:23:14-0400

tan4(1/2z)dz∫tan^4⁡(1/2 z) dz

let u=1/2zdu=1/2dzor2du=dzu=1/2 z ⇒ du= 1/2 dz or 2du=dz

؞tan4(1/2z)dz=2tan4udu(i)؞ ∫tan^4⁡(1/2 z) dz=2∫tan^4⁡ udu …(i)

we define

ǀn=tannudu=(tann1u)/(n1)ǀ(n1)forn2ǀ_n= ∫tan^n⁡ udu= (tan^{n-1} u)/(n-1) - ǀ_(n-1) for n≥2

as the reduction formula

thus,

ǀ4=tan4udu=tan3u/3ǀ2(ii)ǀ_4= ∫tan^4⁡udu= tan^3⁡u /3- ǀ_2 …(ii)

ǀ2=tan2udu=tanuǀ0(iii)ǀ_2 = ∫tan^2⁡u du= tan⁡u- ǀ_0 …(iii)

ǀ0=du=u(iv)ǀ_0 = ∫du=u …(iv)

replacing (iv) in (iii) gives

ǀ(2)=tanuu(v)ǀ_(2 )=tan⁡ u-u …(v)

replacing (v) in (ii) gives

ǀ4=tan3u/3(tanuu)ǀ_4 = tan^3⁡u /3-(tan⁡u-u)

tan3u/3tanuu(vi)tan^3⁡u /3-tan⁡u -u …(vi)

replacing (vi) in (i) gives

tan4(1/2z)dz=2[tan3(1/2z)/3tan(1/2z)+1/2z]+c∫tan^4⁡(1/2 z)dz =2[tan^3⁡(1/2 z)/3-tan⁡(1/2 z)+ 1/2 z] +c

=2/3tan3(1/2z)2tan(1/2z)+z+c=2/3 tan^3⁡(1/2 z )-2tan⁡(1/2 z)+z+c





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS