∫ tan⁴ (½)z dz
"\u222btan^4\u2061(1\/2 z) dz"
let "u=1\/2 z \u21d2 du= 1\/2 dz or 2du=dz"
"\u061e \u222btan^4\u2061(1\/2 z) dz=2\u222btan^4\u2061 udu \u2026(i)"
we define
"\u01c0_n= \u222btan^n\u2061 udu= (tan^{n-1} u)\/(n-1) - \u01c0_(n-1) for n\u22652"
as the reduction formula
thus,
"\u01c0_4= \u222btan^4\u2061udu= tan^3\u2061u \/3- \u01c0_2 \u2026(ii)"
"\u01c0_2 = \u222btan^2\u2061u du= tan\u2061u- \u01c0_0 \u2026(iii)"
"\u01c0_0 = \u222bdu=u \u2026(iv)"
replacing (iv) in (iii) gives
"\u01c0_(2 )=tan\u2061 u-u \u2026(v)"
replacing (v) in (ii) gives
"\u01c0_4 = tan^3\u2061u \/3-(tan\u2061u-u)"
"tan^3\u2061u \/3-tan\u2061u -u \u2026(vi)"
replacing (vi) in (i) gives
"\u222btan^4\u2061(1\/2 z)dz =2[tan^3\u2061(1\/2 z)\/3-tan\u2061(1\/2 z)+ 1\/2 z] +c"
"=2\/3 tan^3\u2061(1\/2 z )-2tan\u2061(1\/2 z)+z+c"
Comments
Leave a comment