Question #175018

∫ csc⁴ θ dθ


1
Expert's answer
2021-04-15T06:56:11-0400

Solution:

csc4θ dθ=csc2θcsc2θ dθ=csc2θ(1+cot2θ) dθ=csc2θ dθ+csc2θcot2θ dθ\int \csc^4 \theta\ d\theta \\=\int \csc^2 \theta \csc^2 \theta\ d\theta \\=\int \csc^2 \theta (1+\cot^2 \theta)\ d\theta \\=\int \csc^2 \theta \ d\theta +\int \csc^2 \theta\cot^2 \theta\ d\theta

=cotθ(cotθ)33+C\\=-\cot \theta-\dfrac{(\cot \theta)^3}{3}+C [[f(x)]nf(x)dx=[f(x)]n+1n+1+C\because \int [f(x)]^nf'(x)dx=\dfrac{[f(x)]^{n+1}}{n+1}+C ]

=cotθcot3θ3+C\\=-\cot \theta-\dfrac{\cot^3 \theta}{3}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS