∫ csc⁴ θ dθ
Solution:
∫csc4θ dθ=∫csc2θcsc2θ dθ=∫csc2θ(1+cot2θ) dθ=∫csc2θ dθ+∫csc2θcot2θ dθ\int \csc^4 \theta\ d\theta \\=\int \csc^2 \theta \csc^2 \theta\ d\theta \\=\int \csc^2 \theta (1+\cot^2 \theta)\ d\theta \\=\int \csc^2 \theta \ d\theta +\int \csc^2 \theta\cot^2 \theta\ d\theta∫csc4θ dθ=∫csc2θcsc2θ dθ=∫csc2θ(1+cot2θ) dθ=∫csc2θ dθ+∫csc2θcot2θ dθ
=−cotθ−(cotθ)33+C\\=-\cot \theta-\dfrac{(\cot \theta)^3}{3}+C=−cotθ−3(cotθ)3+C [∵∫[f(x)]nf′(x)dx=[f(x)]n+1n+1+C\because \int [f(x)]^nf'(x)dx=\dfrac{[f(x)]^{n+1}}{n+1}+C∵∫[f(x)]nf′(x)dx=n+1[f(x)]n+1+C ]
=−cotθ−cot3θ3+C\\=-\cot \theta-\dfrac{\cot^3 \theta}{3}+C=−cotθ−3cot3θ+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments