∫ csc⁴ θ dθ
Solution:
"\\int \\csc^4 \\theta\\ d\\theta \n\\\\=\\int \\csc^2 \\theta \\csc^2 \\theta\\ d\\theta \n\\\\=\\int \\csc^2 \\theta (1+\\cot^2 \\theta)\\ d\\theta \n\\\\=\\int \\csc^2 \\theta \\ d\\theta +\\int \\csc^2 \\theta\\cot^2 \\theta\\ d\\theta"
"\\\\=-\\cot \\theta-\\dfrac{(\\cot \\theta)^3}{3}+C" ["\\because \\int [f(x)]^nf'(x)dx=\\dfrac{[f(x)]^{n+1}}{n+1}+C" ]
"\\\\=-\\cot \\theta-\\dfrac{\\cot^3 \\theta}{3}+C"
Comments
Leave a comment