∫ sin5x cos3x dx
∫\int∫ sin5xcos3xdx=∫22sin(5x)cos(3x)dx=12∫2sin(5x)cos(3x)dx=12∫(sin(5x+3x)+sin(5x−3x))dx=12∫(sin(8x)+sin(2x))dx=12(∫sin(8x)dx+∫sin(2x)dx)=12(−cos(8x)8+−cos(2x)2)+C=−cos(8x)16−cos(2x)4+C\begin{array}{l} =\int \frac{2}{2} \sin (5 x) \cos (3 x) d x \\ =\frac{1}{2} \int 2 \sin (5 x) \cos (3 x) d x \\ =\frac{1}{2} \int(\sin (5 x+3 x)+\sin (5 x-3 x)) d x \\ =\frac{1}{2} \int(\sin (8 x)+\sin (2 x)) d x \\ =\frac{1}{2}\left(\int \sin (8 x) d x+\int \sin (2 x) d x\right) \\ =\frac{1}{2}\left(\frac{-\cos (8 x)}{8}+\frac{-\cos (2 x)}{2}\right)+C \\ =\frac{-\cos (8 x)}{16}-\frac{\cos (2 x)}{4}+C \end{array}=∫22sin(5x)cos(3x)dx=21∫2sin(5x)cos(3x)dx=21∫(sin(5x+3x)+sin(5x−3x))dx=21∫(sin(8x)+sin(2x))dx=21(∫sin(8x)dx+∫sin(2x)dx)=21(8−cos(8x)+2−cos(2x))+C=16−cos(8x)−4cos(2x)+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments