Question #175016

∫ sin5x cos3x dx


1
Expert's answer
2021-04-15T07:40:20-0400

\int sin5xcos3xdx=22sin(5x)cos(3x)dx=122sin(5x)cos(3x)dx=12(sin(5x+3x)+sin(5x3x))dx=12(sin(8x)+sin(2x))dx=12(sin(8x)dx+sin(2x)dx)=12(cos(8x)8+cos(2x)2)+C=cos(8x)16cos(2x)4+C\begin{array}{l} =\int \frac{2}{2} \sin (5 x) \cos (3 x) d x \\ =\frac{1}{2} \int 2 \sin (5 x) \cos (3 x) d x \\ =\frac{1}{2} \int(\sin (5 x+3 x)+\sin (5 x-3 x)) d x \\ =\frac{1}{2} \int(\sin (8 x)+\sin (2 x)) d x \\ =\frac{1}{2}\left(\int \sin (8 x) d x+\int \sin (2 x) d x\right) \\ =\frac{1}{2}\left(\frac{-\cos (8 x)}{8}+\frac{-\cos (2 x)}{2}\right)+C \\ =\frac{-\cos (8 x)}{16}-\frac{\cos (2 x)}{4}+C \end{array}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS